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ABSTRACT 

Assessment of damage initiation and progression in composite structures reinforced with 

electrically active filaments is modelled in a multiscale analysis. The analysis developed is a 

two-tier, interactive analysis, which involves two length scales; macroscopic, and microscopic. 

The proposed multiscale analysis provides seamless integration of the mechanics at the two 

length scales, including piezoelectric and pyroelectric coupling effects and damage under overall 

thermomechanical loads and an electric field applied to electroactive fibers. The 

macromechanical analysis is performed for multidirectional, fibrous laminates using the 

lamination theory, including bending, and the micromechanical analysis is performed using a 

two-phase model and a periodic array model. The effect of eigenstrains caused by 

thermomechanical, electromechanical, and thermoelectric coupling at both the microscopic and 

macroscopic length scales is accounted for by a two-tier transformation field analysis (TFA). 
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1. INTRODUCTION 

Piezoelectric materials have been used as both sensors and actuators for smart structures. 

They may be used for structural health monitoring (SHM) or for control of deformation 

purposes. In applications where this functionality together with a decent load carrying capacity 

are desired, piezoelectric filaments are embedded in a polymeric matrix to form an electroactive 

unidirectional composite, which may be utilized in various laminated or woven architectures. 

Research in electrically active composites has seen both modeling and experimental efforts. In 

one class of work, which is relevant to that presented here, the focus has been on prediction of 

the overall properties of piezoelectric composites, including mechanical, electrical and coupled 

effects, particularly within the micromechanics framework. This is found for example in the 

work of Aboudi [1], Berger et al. [2], Challagulla and Georgiades [3], Chen [4], Hadjiloizi et al. 

[5, 6], Della and Shu [7], and Kumar and Chakraborty [8] among others. 

Multiscale models on the other hand were limited to inactive composites but included 

damage. This is found in the two-scale models of Sato et al. [9] for crack initiation in cross ply 

laminates and Ivančević and Smojver [10] for microscale damage. The latter combined finite 

elements of a unit cell of the microstructure and homogenization to model the effect of local 

damage on overall properties. Spahn et al. [11] on the other hand combined finite elements and 

analytical modeling using integral equations and fast Fourier transformation to capture the effect 

of localized damage on the overall response of fibrous composites, while Liu et al. [12] 

combined continuum damage, micromechanics and finite elements to predict failure of 

composite pressure vessels. A macro/meso model, which utilized a hexagonal representative 

volume element of fibrous composites was developed by Li et al. [13] to model damage caused 

by thermomechanical loads, and global-local numerical strategies which couple a mesoscale, 
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continuum model and microscale models can be found in the work of Daghia and Ladevèze [14, 

15] , Kurnatowski and Matzenmiller [16], Mao et al. [17], and Zhang et al. [18]. Two-scale 

models for damage in composite laminates based on transformation field analysis can be found 

in the work of Bahei-El-Din and Botrous [19] for fiber debonding, Bahei-El-Din et al. [20] for 

macroscopic failure of plies, and Khire et al. [21] for uncertainties associated with propagation of 

damage. A recent comparison of various models with experiments is found in Kaddour and 

Hinton [22, 23]. Multiscale modeling of composites including damage can be also found for 

particulate composites [24-26], and for woven composites [27-31]. 

Modeling of fibrous composites with electroactive fibers using multiscale models can be 

found in the work of Bahei-El-Din and Micheal [32, 33] for undamaged fibrous laminates and 

fibrous laminated structures, respectively. The only treatment of damage in composites 

reinforced with piezoelectric fibers can be found in the work of Bahei-El-Din [34] for 3D woven 

composites. In this work, multiscale modeling was performed with a transformation field 

analysis and relied on the periodic construction of the 3D woven architecture to find a unit cell 

which is representative of the overall behavior. In this case, the unit cell is subdivided into small 

volumes over which the local stress distribution is modeled as piecewise uniform. Extension of 

this approach to fibrous laminates of a general layup is not possible since a unit cell can be found 

for very limited layups, e.g. cross plies. 

To offer a multiscale solution for the overall behavior of piezoelectric composite laminates 

with a general layup, which incorporates damage, the present paper combines lamination theory 

and micromechanical models of fibrous composites in a two tier, thermo-electro-mechanical 

transformation field analysis (TFA) approach. Laminate geometry, loads and materials are 

described in Section 2 and constitutive equations and interrelations for fibrous composites 
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microscale and laminate macroscale are detailed in Section 3. In Section 4, transformation fields 

caused in multidirectional laminates by thermos-electro-mechanical coupling of piezoelectric 

filaments and damage are examined. Utilizing the proposed methodology in monitoring 

deformations within fibrous laminates is presented in Section 5, with several applications given 

in Section 6, and comparison with experimental measurements given in Section 7. The paper 

closes with conclusions and future work in Section 8. 

 

2. GEOMETRY, MATERIALS AND LOADS 

The problem under consideration is that of piezoelectric fibrous laminates subjected to 

thermomechanical loads as well as internal deformations which may result from local electric 

fields and/or electric displacements. The laminates considered consist of n  fiber reinforced plies, 

each with a thickness it , 1,i n= , leading to a total thickness 
1,

i

i n

h t
=

=  and ply volume fraction 

/i ic t h=  such that 
1,

1i

i n

c
=

= . Two coordinates systems are considered (Fig. 1); one is local, 

which coincides with the material principal axes of each ply, and one is overall, which is selected 

such that the 1 2x x -plane coincides with mid-plane of the laminate, and the 3x -axis is in the 

thickness direction. The local coordinate system is denoted 
kx , 1,2,3k = , such that the 3x -axis 

coincides with the longitudinal direction of the fibers, and 1 2x x  is transverse plane of the fibrous 

lamina. The fiber orientation is defined in terms of the angle  i , 1,i n= , enclosed by the local 

3x -axis and the overall 1x -axis (Fig. 1). The overall loads consist of membrane forces 

[ , , ]  =N N N N , bending moments [ , , ]  =M M M M , Fig. 1, and a piecewise uniform 

change of temperature ,i  1,i n= , across the laminate thickness. 
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Each ply is a unidirectional, fibrous composite reinforced with piezoelectric filaments. 

Volume fractions of the fiber (f) and matrix (m) are denoted by fv , 
mv , such that 1f mv v+ = . 

With regard to thermoelastic behavior, the matrix is assumed to be isotropic while the fiber is 

transversely isotropic. Let E , G ,  , and   denote Young’s modulus, shear modulus, Poission’s 

ratio, and coefficient of thermal expansion, respectively. Thermoelastic properties of the matrix 

are then identified as 
mE , m

 (or 0.5 /(1 )m m mG E= + ), and m
. Properties of the fiber related to 

deformations in longitudinal planes are identified as 
l

fE , 
l

fG ,  l

f ,  l

f , and those related to 

deformations in the transverse plane are identified as 
t

fE ,  t

f  (or 0.5 /(1 )t t t

f f fG E= + ), and  t

f . 

Only the fiber is assumed to possess piezo/pyroelectric characteristics (Bahei-El-Din and 

Micheal, [32]). The direct electrical response is defined in terms of the permittivity constants, 

11 22 =  in the transverse plane, and 
33  in the longitudinal direction. Two sets of properties 

define the electrically-coupled response, one for electromechanical, and one for thermoelectric. 

The latter is given in terms of the pyroelectric constants 
11 22q q=  and 

33q . The electromechanical 

coupling can be defined for transversely isotropic fibers in terms of three piezoelectric constants, 

31d , 
33d , and 

15d  [32]. 

 

3. INTERRELATIONS BETWEEN MULTIPLE SCALES 

The proposed multiscale model for fibrous laminates considers an idealized microstructure of 

a fibrous ply and the interaction between the plies caused by mutual constraints. The idealized 

local stresses and strains within the ply are assumed to be piecewise uniform, and the ply overall 

stresses and strains are found as averages. In this section, the relations between the phase stress 
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and strain fields within the microstructure of a ply and the overall ply stresses and strains are 

summarized.    

 

3.1 Micromechanics  

Each unidirectional lamina is divided into Q  phases, each has a volume fraction 
rv , 

1,r Q= , such that 1= rv . In averaging models of fibrous composites [35-38] where the local 

stresses and strains represent averages over the fiber and matrix subvolumes, the number of 

phases Q  is two. In more refined models, which are based on analysis of a representative volume 

element, the fiber and matrix are divided into a number of subvolumes over which the local 

fields are idealized as piecewise uniform. Hence a phase, or a subvolume, may belong to the 

fiber or the matrix and 2Q . In any case, the lamina overall stresses   and strains  , referred 

to the material principal axes 
kx , 1,2,3k = , are expressed as volume averages of their local 

counterparts,  r
 and  r

, by 

1

 =  r r

r= ,Q

v ,  
1

 =  r r

r= ,Q

v .                    (1) 

Constitutive behavior of the phases is expressed as the sum of the elastic response caused by 

mechanical loads and the response due to other ‘eigen’ effects, e.g. thermal, piezoelectric, etc., 

which cannot be removed by mechanical unloading. Hence, 

r r r r= +  L ,  r r r r= +  M ,     1,r Q= ,                        (2) 

where rL , 1

r r

−=M L  are elastic stiffness and compliance [32], and r , r r r= − M  are eigen 

stress and strain. 

Similarly, constitutive behavior of a fibrous composite lamina can be written in the material 

principal axes, kx , as follows 
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= +  L ,  = +  M .                              (3) 

The lamina overall stiffness and compliance are given in terms of their phase counterparts 

by [35] 

1,

L L A
=

=  r r r

r Q

v ,  
1,

M M B
=

=  r r r

r Q

v ,                         (4) 

where 
rA , 

rB  are strain and stress concentration factors, such that 

r r= A ,  
r r= B .                           (5) 

Micromechanical models which have been developed to generate the strain and stress 

concentration factors fall into one of two categories, averaging models and periodic array 

models. While averaging models offer closed forms for the concentration factors, periodic array 

model center on analysis of a unit cell, which provides the factors computationally [19]. 

The lamina eigen strains and stresses are given in terms of their phase counterparts by [39] 

1,

A 
=

=  T

r r r

r Q

v ,  
1,

B 
=

=  T

r r r

r Q

v .                         (6) 

Finally, the phase strains and stresses are given by superposition of the overall effect, Eq. (5), 

and the local effects caused by the eigen strains and stresses [39]; 

1,

A D  
=

= + r r rs s

s Q

,  
1,

B F  
=

= + r r rs s

s Q

,  1,=r Q .                                   (7) 

Here, Drs  and Frs  are strain and stress influence functions. They too can be found in closed form 

for averaging models, but are available only numerically for periodic array models [40]. 

The concentration factors and the influence functions follow the identities [40], 

1,

A I
=

= r r

s Q

c ,  
1,

B I
=

= r r

s Q

c ,                          (8) 

1,

F 0
=

= r rs

s Q

c ,  
1,

F 0
=

= r rs

s Q

c ,  1,=r Q .                               (9) 
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3.2 Laminates  

Having related the phase stresses to the lamina stresses, we now direct our attention to 

describing the latter in terms of the laminate loads, namely membrane forces [ , , ]  =N N N N , 

and bending moments [ , , ]  =M M M M . As a first step, the lamina in-plane stresses and strains, 

denoted  ˆ , , =       and  ˆ , ,2 =      , are extracted from the full (6x1) vectors, and 

described in the overall coordinate system of the laminate jx , 1,2,3=j , Fig. 1: 

ˆˆ I = ,  ˆˆ I = ,  ˆ ˆR = ,  ˆ ˆN = ,                                   (10) 

1 0 0 0 0 0
ˆ 0 0 1 0 0 0

0 0 0 0 1 0

I
 
 =
 
 

,  

2 2

-1 2 2

cos sin 0.5sin 2

sin cos 0.5sin 2

sin 2 sin 2 cos2

R N

 −
 = =
 

−  

T

  

  

  

.                               (11)                                                                  

In analogy with eq. (3), the in-plane stresses and strains are directly related by a stiffness matrix 

and compliance matrix. These are denoted, respectively, by L̂ , 1ˆ ˆ−=M L  in the material 

principal axes of the ply, 
kx , and  L̂ , 

1ˆ ˆ−=M L  in the overall axes, jx , Fig. 1. The form of these 

matrices together with their coordinate transformation can be found in Bahei-El-Din and Micheal 

[32].  

In general, the stresses and strains vary point wise across the laminate thickness, and the 

lamina stresses and strains in eq. (10) represent averages over the ply thickness. Hence, 

2

2

1
ˆ ˆ( ) 

+

−

= 
i i

i i

z t

i

i z t

z dz
t

,  
2

2

1
ˆ ˆ( ) 

+

−

= 
i i

i i

z t

i

i z t

z dz
t

,                                                                             (12) 

where 
3z x  is Cartesian coordinate in direction perpendicular to the laminated plate (Fig. 1), 

with the origin located on the mid-plane of the laminate, and 
iz  is the 

3x  coordinate of the mid-

plane of the lamina. 
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The applied membrane forces and bending moments are expressed as resultants of the 

lamina stresses; 

2/ 2

1, 1,/ 2 2

ˆ ˆ ˆ( ) ( )  

+

= =− −

 
= = = 

 
 

  
i i

i i

z th

i i

i n i nh z t

z dz z dz tN ,                      (13) 

2/ 2

1,/ 2 2

ˆ ˆ( ) ( ) 

+

=− −

 
= =  

 
 

 
i i

i i

z th

i nh z t

z z dz z z dzM .                       (14) 

Considering thin laminates, transverse shear deformations are negligible, and the in-plane 

strains ˆ( ) [ , ,2 ] =z       are assumed to vary linearly across the thickness with the z  

coordinate. Hence, 

ˆ( )  = +oz z ,                              (15) 

where [ , ,2 ] =o

  

      is the strain at mid-plane of the laminate, and [ , , ] =       is the 

curvature with respect to the mid-plane. Considering eigen stresses and strains that may be 

generated in the individual plies, the mid-plane strain and curvature of the laminate are related to 

the applied loads according to the following modified relations [20]: 

f   = + +o A BN M ,  g   = + +C DN M .                      (16) 

The coefficient matrices in the first two terms of eq. (16) are a function of the elastic properties 

of the laminas, their volume fractions and laminate layup; 

 1( )I
− = −A BB A , 1− = −B A BD ,  1− = −C DBA ,  1 1[ ]− − = −D D BA B ,                 (17) 

1,

L̂
=

= i i

i n

tA ,  ( )
1,

L̂
=

= i i i

i n

t zB ,  2 2

1,

1 ˆ
12

L
=

 
= + 

 
 i i i i

i n

t t zD .                    (18)                                                                                                                      

The eigen strain f  and curvature g  are discussed in Section 3.3 where the treatment of eigen 

fields on all length scales is presented. 
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To complete the formulation for laminates, the ply stresses are found in analogy of eq. (7) as 

the superposition of the stress caused by the overall membrane forces and bending moments, and 

those caused by the eigenstresses [20]; 

1,

ˆˆ ( ) P Q U λ
=

= + + i i i i ij j

j n

z N M ,                                   (19)

 

 

The coefficient matrices, Pi
, Qi

 denote stress distribution factors, and Uij
 denotes stress 

transformation influence functions. They vary point wise along the laminate thickness, and are a 

function of elastic moduli and volume fractions of the laminas, and the laminate layup; 

( )ˆP L  = +i i izA C ,  ( )ˆQ L  = +i i izB D ,                                  (20)  

( )U I P Q= − −ij ij j i j j it t z .                        (21) 

Here too, discussion of the lamina eigenstress λ̂ j
 will be included in Section 3.3. Finally, we note 

the following identities for the ply distribution factors and influence function, which are derived 

from the equilibrium of the lamina forces [20]: 

1,

,P I
=

= i i

i n

t   ( )
1,

,P 0
=

= i i i

i n

t z                          (22) 

1,

,Q 0
=

= i i

i n

t   ( )
1,

.Q I
=

= i i i

i n

t z                         (23) 

  

4. EIGN STRESSES AND STRAINS 

The eigen stresses and strains are auxiliary fields which are present in addition to those 

caused by mechanical loads and cannot be removed by unloading. Their effect on local and 

overall fields is considered as a superposition on the mechanical effects as indicated in eqs. (2), 

(3), and (16) for the phases of a fibrous composite, for a lamina, and for the laminate, 

respectively. The phase eigen stresses and strains, r , r , 1,=r Q , are related to their ply 
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counterparts,  ,   by eq. (6) [39]. The latter lead to eigen deformations for the laminate, 

namely, eigenstrain f   for strains of the laminate mid-plane, and eigencurvature, g  , eq. (16). 

These are found by Bahei-El-Din et al. [20] as 

f g f  = − −B A ,  g f g  = − −C D ,                       (24)     

1,

ˆf 
=

= i i

i n

t ,  ( )
1,

ˆg 
=

= i i i

i n

t z ,                        (25)                                                                                                                                                                                                                       

where ̂i
 denotes the in-plane eigenstresses of the ply described in the overall coordinate system 

of the laminate (Fig. 1). They are related to the full eigenstress vector i
 described in the ply 

coordinate system by the stress reduction and transformation relations given in eq. (10). 

Accordingly, the entire eigen stress and strain fields at all length scales is defined as long as 

those available at the microscopic level in the fiber and matrix constituents, or their subdivisions, 

are described. 

 

4.1 Thermo-Electro-Mechanical Coupling  

Considering first electro-thermo-mechanical coupling effects, the eignstresses and 

eignstrains in phase or subvolume 
rV  subjected to electrical field  ,E = 1 2 3E E ,E  and/or thermal 

change θ  can be expressed as [4, 8]  

e L = − −T

r r r rθE ,  d = +T

r r rθE .                       (26)                                                                  

The coupling matrices er  and dr
 list the piezoelectric constants,  r

 lists the coefficients of 

thermal expansion. For transversely isotropic materials, they take the following form (Bahei-El-

Din, [34]) 
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31

31

T 33

15

15

0 0

0 0

0 0

0 0

0 0

0 0 0

d

 
 
 
 

=
 
 
 
  

d

d

d

d

d

,  

31

31

T 33

15

15

0 0

0 0

0 0

0 0

0 0

0 0 0

e

 
 
 
 

=
 
 
 
  

e

e

e

e

e

,  
0

0

0



 
 
 
 

=  
 
 
 
 

T

T

L

α

α

α
.                        (27) 

The piezoelectric constants are related by the elastic mechanical moduli, 

2= +31 31 33e kd d ,  2= +33 31 33e d nd ,  =15 15e pd ,                     (28)  

where , , , ,k m n p  are Hill’s elastic moduli [35]. 

For completeness, we list the electric displacement and field resulting from direct and 

coupling effects as follows: 

e q d q = + − = + −D κ E κ E   ,                                                                                      (29) 

1  +−= −E κ D g h ,                            (30) 

where q  is pyroelectric constant, g  is voltage constant, h  is thermo-electric coupling constant, 

and κ  is the permittivity matrix, which can be measured at constant stress, κ , or at constant 

strain, κ . The following connections exist and can be readily verified [32], 

1
d

−=g ,  1
q

−=h .                         (31) 

For a transversely isotropic material, the only nonzero constants are =11 22κ κ  and 33κ . In this 

case, the voltage matrix g  takes the same form as the piezoelectric constant d , eq. (27). Hence, 

/=31 31 33dg κ σ , /=33 33 33dg κ  , /=15 15 11dg κ  . 

 

4.2 Damage 

The treatment of damage follows the scheme developed by Bahei-El-Din et al. [27] in which 

auxiliary transformation fields are introduced to evacuate the stresses caused by the applied 
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loads. Let  AUX

s  represent such fields, which are introduced in   subvolumes of a representative 

volume element of a unidirectional composite, where certain failure criteria are satisfied as 

described in the Appendix. These are yet unknown, but can be found from eq. (7)2 by writing the 

stress components in subvolume 
sV , 1,= s ,  Q , the total number of subvolumes, and 

limiting the magnitude of the stresses to zero. Hence, 

1,

B F 0  
= 

= + = AUX

s s sq q

q

,  1,= r ,                       (32) 

and the auxiliary field is thus determined.  

Accordingly, the progression of damage is determined from elastic analysis of a lamina 

representative volume in the undamaged state, which is modified to reflect damage that can be 

inflicted at the total stresses arrived at so far. The overall load is usually applied in small 

increments in order to obtain a refined map of the damage progression. However, the damage 

state at a given load is independent of the number of load increments applied for a given loading 

path. On the other hand, the damage state predicted by this approach is a function of the loading 

path, which is the expected behavior. 

 

5. MONITORING DEFORMATIONS 

We now integrate the above formulation on the micromechanical, lamina, and laminate level 

to simulate monitoring of the overall and local deformations, including damage progression. The 

output of interest is the electric displacement [ , , ]=i i

r rD 1 2 3D D D  in phase, or subvolume 
rV , 

1 r Q , in lamina 1 i n , caused by the laminate mechanical loads, [ , , ]= 1 2 12N N N N  and 

[ , , ]= 1 2 12M M M M , and lamina temperature change i . Moreover, we assume that phase 
rV  is 
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subjected to electric field [ , , ]=E i i

r 1 2 3 rE E E , and that the lamina temperature is uniform and hence 

the phase is subjected to =i

r i . 

The phase electric displacement i

rD  is given by eq. (29) as the sum of the direct electric 

contribution and the coupling effect, both electro-mechanical and thermo-electric. The electro-

mechanical coupling term is a function of the phase stress  i

r , which can be substituted in terms 

of the laminate mechanical loads, N , M , if eqs. (7) and (19) are utilized. In doing this exercise, 

eq. (10) is utilized to extract the in-plane stresses from the lamina full stress, and transform the 

former between the lamina principle axes and the laminate overall axes. Hence, 

ˆˆd B I R P Q U λ F q
  

= + + + + −  
   

 D κ E N Mi i i i i T i i i

r r r r r i i i ij j rs s r i

j=1,n s=1,Q

  .                        (33) 

The entire collection of phase eigen stresses  i

q , 1 q Q , 1 i n , contribute to the electric 

displacement in a given phase or subvolume 
rV  twice; through the stress due to constraints 

caused by the fully bonded laminas, and through the stress caused by micromechanical 

constraints within a lamina. In eq. (33), these effects are represented by the first and second 

terms in the brackets, respectively. Utilizing eq. (26), and assuming the presence of a set of 

auxiliary eigen stress ,
AUX

j  (Section 4.2) in subvolumes V , 1,=  j ,  j Q , 1 j n , eq. 

(33) can be expanded as 

q= −D κ Ei i i i

r r r r i   

( ) ,
ˆ ˆd B I R P Q U N I A e L A 



    
+ + − + +  

     
  N M E

j

i i T T j jT jT j j j j jT AUX

r r i i i ij j q q q q q q q j

j=1,n q=1,Q =1,

v v  





( ) ,F e L F 


 
− + +  

 
 

i

i iT i i i i AUX

rs s s s s i r i

s=1,Q =1,

E  



 .                                        (34) 



15 
Y.A. Bahei-El-Din, A. Micheal, Mechanics of Materials, V.113, 2017 

The first two terms represent the direct electric effect and the pyroelectric coupling effect, 

respectively. The last term represents the electromechanical coupling effect, with contributions 

from all stress components that are present in piezoelectric phases or subvolumes. These include 

stresses caused by overall mechanical loads applied to the laminate and by eigenstresses found in 

the phases. The latter are either generated due change of temperature and/or caused by an electric 

field, or introduced to simulate damage. The last term in eq. (34) represents the self induced 

effects caused in the lamina where subvolume 
rV  resides. The cross effect among the laminas is 

described by the term within the parenthesis in the second term of eq. (34) 

In the absence of the laminate mechanical loads, N , M , temperature change, i , 1 i n , 

and damage, and the introduction of a nonzero electric field in subvolume 
rV  of lamina i  

( 0=E k

q , q r , k i ; 1 q Q , 1 k n ) eq. (34) is reduced to 

 
ii i

r rr
= D κ E ,  ˆ ˆd B I RU N IA e F e

 = − + 
i i i i i T T iT iT i iT

r r r r i ii i r r rr rr
vκ κ .                     (35) 

Matrix κ
i

r
 defines the apparent permittivity of subvolume 

rV  in lamina i  under constant stress. 

It is found by modifying the permittivity κ  by a certain magnitude, which depends on the 

deformation constraints found at the micromechanical and the laminate length scales.  

If on the other hand the laminate mechanical loads are absent while a temperature change is 

applied uniformly to lamina i  such that, 0=k , k i , 1 i n , the apparent pyroelectric 

constant for subvolume 
rV  in lamina i  can be found from (34) as 

q= −D i i

r r i ,  ˆ ˆq d B I RU N I A L F L 
 

= − + 
 

 
i i i i T T i i T i i i i i

r r r i ii i q q q q rs s sr
q=1,Q s=1,Q

vq .                    (36) 

Here too, the pyroelectric constant is modified to reflect the deformation constraints within the 

lamina and across the plies.  
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6. APPLICATIONS 

In this section applications of the above methodology to fibrous laminates exhibiting 

damage under overall membrane loads and/or bending moments are presented. The laminates 

considered are comprised of a DY063 epoxy matrix reinforced with PZT-5A filaments at a 

volume fraction of 0.55. Tables 1 and 2 provide relevant properties of the fiber and matrix. 

Ultimate strength of the matrix is assumed at 31.72 MPa under tension and 115 MPa under 

compression, and the shear strength is assumed at 46.36 MPa [20]. In modeling each ply, both 

the periodic hexagonal array (PHA) model [41] and Mori-Tanaka averaging model [38] are 

considered. In the PHA model, the representative volume element is subdivided into a set of 

homogeneous elements, which belong to either the matrix or the fiber. One row of matrix 

subvolume, which is adjacent to the fiber is treated as an interface layers, with properties equal to 

those of the matrix, but with a coefficient of friction of 0.268 against sliding in either the 

longitudinal or the transverse directions (Bahei-El-Din et al., [20]). 

The results presented include the overall response and readings of the electric displacement, 

3D , in the PZT fibers. Also, the apparent magnitude of the PZT fiber permittivity, 33κ , is 

reported. This is evaluated during the course of loading the laminates and evolution of damage 

by suspending the overall mechanical load at predetermined values and computing the 

corresponding electric displacement 
3

MechD  in the fibers. An electrical field 6

3 = 0.1x10  V/mE   is 

then applied to the fibers in individual laminas and the updated electric displacement, 

3

Mech Electric+D , is computed. The aparaent permitivity in the PZT fibers is then found as (Eq. 30), 

( )3 3 3

Mech Electric Mech

33

+= −κ D D E .                                   (37) 
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6.1 Damage under Membrane Load 

In one application a symmetric, quasi-isotropic, (0/±45/90)S laminate is subjected to overall 

axial load applied in the 
1x -axis, which coincides with the 0o fiber. Both the Mori-Tanaka 

averaging model and the PHA model are invoked. The computed stress-strain response is shown 

in Fig. 2. The plateau appearing at certain stress levels indicates failure at predetermined loads. 

In the PHA model, where local stresses are modeled as piecewise uniform, failure initiates in the 

off-axis plies at the fiber/matrix interface at overall stress of 60 MPa, and progresses in the 

matrix away from the interfaces as the load is increased. In the averaging model, on the other 

hand, the failure criteria involve average stresses and hence the onset of failure is overestimated 

at an overall stress of 80 MPa. Damage progression maps computed in the 45o and 90o plies 

using the PHA model are shown in Fig. 3. 

The damage inflicted on the plies is reflected on the electric displacement, 
3D ,  computed in 

the PZT fiber (Fig. 4).  The successive changes seen in the electric displacement at constant 

overall load are indicative of initiation of damage. The change in 
3D  relative to the applied 

overall stress past the onset of failure compared to the undamaged state is indicative of sustained 

damage. 

Damage is also reflected on the magnitude of the PZT fiber apparent permittivity, 33κ . Figure 

5 shows the change in permittivity of the 0o and 45o fibers as the laminate load is increased. As 

damage progresses, the constraints imposed on the fibers of a given ply are effectively relaxed, 

albeit at different degrees, and the permittivity increases relative to that found in the undamaged 

state and approaches the unconstrained, stand-alone magnitude. To reiterate how this is 

accomplished in the TFA approach described here, the effect of damage on the constituent 
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stresses is modeled by introducing auxiliary eigen stresses, which affect the electrical 

displacement and consequently the magnitude of the permittivity (eq. 37). 

 

 6.2 Damage under Bending Moment 

In this application the (0/±45/90)s laminate utilized above is subjected to a bending moment 

M  of -3.5 kN.m (Fig. 6) under a constant compressive membrane load N , which causes an 

overall stress,   of 30 MPa. The PHA model was invoked as well as damage.  

Focusing on the strain at mid-plane of the laminate, 

 , and curvature  , Figs. 6 and 7 

show how they are changing with the applied load and the initiation and progression of damage. 

Under pre-compression, 30 MPa = − , which has not caused damage, the symmetric laminate, 

as expected, does not exhibit curvature, and the mid-plane strain is computed at 0.17%

 = −  

(eq. 16). The latter remains constant as the bending moment M  is applied and the laminate 

remains in the undamaged state. Under pre-compression and the quadratic failure criterion 

assumed for the matrix (Appendix), the lower (compression) side of the laminate is more 

susceptible to failure due to the bending moment described above. At 1.6 = −M  kN.m. matrix 

failure initiates in the lower +45o ply and the laminate is no longer symmetric. In this case, the 

neutral axis under bending effectively shifts upwards and the compressive strain at the mid-plane 

increases, while the curvature deviates from the undamaged profile as the bending moment is 

increased. 

Figures 8 and 9 show change of the electric displacement, 
3D , in the PZT fibers of all plies. 

The closed symbols indicate the electric displacement at -3.5 kN.m. It is seen that the 0o ply 
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located at the lower surface of the laminate see the largest change in electric displacement as the 

other, off-axis plies suffer from damage. 

 

7. COMPARISON TO EXPERIMENTS 

The multiscale scheme developed above was tested by comparing its predictions to 

experiments of fibrous laminates undergoing damage. The stress-strain response measured by 

Soden et al. [43] for a (±55)2, glass/epoxy composite laminate is simulated where the 

microstructure of the fibrous plies is modeled with the PHA idealization. The fiber is Silenka E-

glass with longitudinal Young’s modulus of 70 GPa, shear modulus of 30.8 GPa, and Poisson’s 

ratio of 0.2 [44]. Longitudinal tensile strength of the fiber is 2.15 GPa. The matrix is 

MY750/HY917/DY063 epoxy, with Young’s modulus of 3.35 GPa, shear modulus of 1.24 GPa, 

and Poisson’s ratio of 0.35. The matrix tensile strength for the bulk epoxy material is 80 MPa, 

and shear strength is 70 MPa [44]. The fiber volume fraction is 0.6. 

The composite laminate specimen reported by Soden et al. [43] is a tube subject to axial load 

and internal pressure. The fiber orientation for the (±55)2 is measured with respect to the tube 

circumference. The overall strains were measured by strain gages mounted to the surface of the 

tubular specimen far from the grips. The results predicted are those reported for hoop/axial stress 

ratio of 2, and were found for a laminated plate of the same layup and subjected to biaxial stress. 

In the predictions found with the multiscale scheme, the PHA model was invoked. Matrix failure 

was determined with the failure envelope of eq. (40) given in the Appendix. The ultimate tensile 

stress of the matrix was taken as 100 MPa, which is slightly larger than that reported by Soden et 

al. [44] for the bulk matrix. This magnitude of the ultimate tensile strength provided a better 

match of the overall stress-strain response of the laminate and is considered an in-situ magnitude 
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of the matrix strength under tension. The ultimate shear strength of the matrix was accordingly 

enhanced to 87.5 MPa. 

Interface failure was also modeled as described in the Appendix. The ultimate tensile 

strength at the interface is taken as 31.72 MPa, and the ultimate shear strength is taken as 46.36 

MPa. These were determined by Bahei-El-Din et al. [20] for the same composite material 

considered here by correlating the responses of a unidirectional composite under transverse 

tension and longitudinal shear found by testing [43] and by the Mori-Tanaka model. The 

coefficients of friction corresponding to slip at the interface due to longitudinal shear and 

transverse shear are assumed equal at 0.268 [20].  

Comparison of the measured and predicted response under hoop/axial stress ratio of 2 for 

the (±55)2, glass/epoxy laminate is given in Fig. 10. There is significant nonlinearlity in the 

measured axial stress-strain response, which is captured quite well with the multiscale model. 

Response of the composite laminate measured in the hoop direction is on the other hand much 

stiffer but also matched very well by the predicted results. 

 

 

8. CONCLUSIONS 

The work presented is an integrated, multiscale approach for modeling damage initiation 

and progression in composite structures reinforced with electrically active filaments, which 

involves interactive analysis of two length scales; macroscopic, and microscopic. This approach 

provides seamless integration of the mechanics at the two length scales, including piezoelectric 

and pyroelectric coupling effects, and damage under overall thermomechanical loads and an 

electric field applied to electroactive fibers. Damage is simulated by introducing local 

transformation fields to the undamaged composite to leave a stress state, which reflects the 
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damage criteria. The effect of local fields, which are unrelated to mechanical loading, for 

example those emerging from damage and electro-thermo-mechanical coupling in the reinforcing 

filaments is evaluated by a transformation field approach. 

The merit of the proposed approach lies in modeling all these effects together under one 

scheme in a multiscale analysis. This is illustrated in several examples for fibrous laminates 

subjected to membrane and bending loads, where damage is signaled through readouts of electric 

displacements and effective permittivity. The model predictions for the stress-strain response of 

a fibrous laminate, which is exhibiting a significant nonlinear behavior due to damage compare 

well with the experimental results. This encourages, and indeed paves the way for multiscale 

analysis of composite structures under services loads, including structural health monitoring. 
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APPENDIX – FAILURE CRITERIA OF A FIBROUS COMPOSITE 

The failure criteria utilized in the present work are those described in Bahei-El-Din et al. 

[20] for averaging models, and in Bahei-El-Din [34] and Bahei-El-Din and Botrous [19] for 

periodic array models. 

When averaging models are utilized in laminates, four average stress components may exist 

in constituents of the unidirectional plies, 22 33, , ,r r r r

11 13    , r = f, m  (Fig. 1). Failure under axial 

stress 33

r  occurs when the stress magnitude equals the ultimate strength, which may assume 

different magnitudes under tension and compression. If these are denoted by r

uT , r

uC , r = f, m , 

the failure criterion is written as 33

r r

uT =  if 33 0r  , and  33

r r

uC =  if 33 0r  . 

Under transverse normal stresses, matrix failure occurs by slip on planes parallel to the fiber 

when the resolved shear stress exceeds the ultimate shear strength of the matrix, m

u . The slip 

direction in this case is transverse to the fibers. Considering frictional slip, failure criterion of the 

matrix in this case can be written as 

1 1

2 2

m m m m m

11 22 T 11 22 u     − + + = ,            (38) 

where 
T  is coefficient of friction for matrix slip in the transverse direction, x x=  if 0x  , 

and 0x =  if 0x  . An entirely different failure mode that may occur in the matrix is 

transverse cracking under tensile stresses, or  failure under compressive stresses. The limiting 

conditions in this case are m m

22 uT =  if 0m

22  , and  m m

22 uC =  if 0m

22  , r = f, m . 

Under longitudinal shear, matrix failure occurs by slip in the longitudinal direction on 

planes parallel to the fiber. Considering again frictional slip, the onset of failure is written as 

m m m

13 L 11 u   + = ,              (39) 
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where 
L  is coefficient of friction. Since ply strength is matrix dominated under transverse loads 

and shear stresses, no failure criteria are specified under these stress components for the fiber. 

These stresses will however vanish in the fiber when the matrix fails, and accordingly the ply 

stresses also vanish. 

In periodic array models the fiber and matrix stress fields are modeled as piecewise uniform 

over small subvolumes. The matrix is isotropic and its failure is treated as a terminal state, 

beyond which the material cannot support any load [34]. Under a local stress applied to a matrix 

subvolume, an ellipsoidal failure envelope is assumed. Hence, 

( ) ( )2 2 2 2 2 2

2 2

1 3
1.011 22 33 11 22 22 33 33 11 23 31 12

u u

f = + + − − − + + + −           
 

,       (40) 

where u  is ultimate normal stress, and 
u  and shear stresses. 

Fiber/matrix interface elements are thin matrix subvolumes, which fail by peeling and/or 

sliding. The latter occurs along the fiber circular circumference or along the fiber longitudinal 

direction. Resolving the subvolume stresses found in the lamina Cartesian coordinates into radial 

stress,  , transverse shear stress,  , and longitudinal shear stress,  , where   is radial 

direction from the center of the fiber, and  , is angular direction (Bahei-El-Din, [34]), failure 

by peeling is characterized by u = . Sliding at the interface in the transverse plane is caused 

by the tangential traction component and is characterized by u    + = , where   is 

coefficient of friction. Sliding in the longitudinal plane is determined by the equality 

2 2

u+ + =       . 
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FIGURES 

Fig. 1. Geometry and load of a fibrous laminate. 

Fig. 2. Stress-strain response due to overall membrane load N  (Fig. 1). 

Fig. 3. Evolution of damage in off-axis plies due to overall membrane load N  (Fig. 1). 

Fig. 4. Electric displacement due to overall membrane load N  (Fig. 1). 

Fig. 5. Apparent permittivity due to overall membrane load N  (Fig. 1). 

Fig. 6. Midplane strain due to bending moment M  and sustained overall membrane load N  

(Fig. 1). 

Fig. 7. Midplane curvature due to bending moment M  and sustained overall membrane load 

N  (Fig. 1).  

Fig. 8. Electric displacement in 0o and 90o plies due to bending moment M  and sustained 

overall membrane load N  (Fig. 1). 

Fig. 9. Electric displacement in ±45o plies due to bending moment M  and sustained overall 

membrane load N  (Fig. 1). 

Fig. 10. Comparison of measured and predicted stress-strain response of a laminated composite 

tube subjected to hoop/axial stress ratio of 2. 
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Table 1. Mechanical properties of fiber and matrix (Berlincourt et al. [42]; 

Bahei-El-Din [9]; Kumar and Chakraborty [8]). 

Material E  (GPa)     (10-6 /oC) 

PZT-5A 60 0.34 2.3 

DY063 Epoxy 3.35 0.35 2.4 

 

 

 

 

Table 2. Piezo/pyroelectric properties of PZT-5A 

(Berlincourt et al. [42]; Bahei-El-Din [34]). 

31d  
33d  

51d   31g  
33g  

15g   3q  

(10-12 m/V)  (10-3 V.m/N)  10-2 (C/m2.oC) 

-171 347 584  11.4 24.8 38.2  0.06 

 

 

 

 



32 
Y.A. Bahei-El-Din, A. Micheal, Mechanics of Materials, V.113, 2017 

 

 

 

 

 

 
 

Fig. 1.  Geometry and load of a fibrous laminate. 

 

 

 

 

 

 



33 
Y.A. Bahei-El-Din, A. Micheal, Mechanics of Materials, V.113, 2017 

 

 

0.0 0.2 0.4 0.6 0.8 1.0

Overall Strain,    11  (%)

0

10

20

30

40

50

60

70

80

90

100

110

O
ve

ra
ll 

 S
tr

es
s,

   
  1

1
  (

M
P

a)

PHA model with damage

Averaging model with damage

Undamaged





90o ply: interface peeling & matrix failure

45o ply: interface transverse sliding

Progressive martix failure

in 45o, 90o plies

_

Bulk martix failure

in 90o ply

PZT-5A/DY063
(0/+45/90)s, cf = 0.55

 
 

Fig. 2. Stress-strain response due to overall membrane load N  (Fig. 1). 
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Fig. 3. Evolution of damage in off-axis plies due to overall membrane load N  (Fig. 1). 
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Fig. 4. Electric displacement due to overall membrane load N  (Fig. 1). 
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Fig. 5. Apparent permittivity due to overall membrane load N  (Fig. 1). 
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Fig. 6. Midplane strain due to bending moment M and sustained overall membrane load 

N  (Fig. 1). 
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Fig. 7. Midplane curvature due to bending moment M and sustained overall membrane 

load N  (Fig. 1).  
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Fig. 8. Electric displacement in 0o and 90o plies due to bending moment M and sustained 

membrane load N  (Fig. 1). 
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Fig. 9. Electric displacement in ±45o plies due to bending moment M and sustained 

membrane load N  (Fig. 1). 
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Fig. 10. Comparison of measured and predicted stress-strain response of a laminated 

composite tube subjected to hoop/axial stress ratio of 2. 
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