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Search-Based Regression 
Testing Optimization
Nagwa R. Fisal, Suez Canal University, Egypt

Abeer Hamdy, British University in Egypt, Egypt

Essam A. Rashed, Suez Canal University, Egypt

ABSTRACT

Regression testing is one of the essential activities during the maintenance phase of software 
projects. It is executed to ensure the validity of an altered software. However, as the software evolves, 
regression testing becomes prohibitively expensive. In order to reduce the cost of regression testing, it 
is mandatory to reduce the size of the test suite by selecting the most representative test cases that do 
not compromise the effectiveness of the regression testing in terms of fault-detection capability. This 
problem is known as test suite reduction (TSR) problem, and it is known to be an NP-complete. The 
paper proposes a multi-objective adapted binary bat algorithm (ABBA) to solve the TSR problem. 
The original binary bat (OBBA) algorithm was adapted to enhance its exploration capabilities during 
the search for a Pareto-optimal surface. The effectiveness of the ABBA was evaluated using six Java 
programs with different sizes. Experimental results showed that for the same fault discovery rate, the 
ABBA is capable of reducing the test suite size more than the OBBA and the BPSO.

Keywords
Binary Bat Algorithm, Multi-Objective Optimization, Mutation Testing, Regression Testing, Search-Based 
Software Engineering, Software Testing, Test Suite Reduction

INTRODUCTION

As software testing is known to be an expensive process, open-source software is usually released 
with several bugs; e.g., at the early releases of Mozilla and Eclipse, about 170 and 120 bugs 
respectively were reported daily (Abeer Hamdy & El-Laithy, 2020; Abeer Hamdy & Ellaithy, 
2020; Abeer Hamdy & Ezzat, 2020). It is essential to design a cost-effective test plan that detects as 
many defects as possible before the release of the open-source software to ensure the quality of the 
delivered software. Especially, during the maintenance phase, enhancements and modifications are 
made to the software, which necessitates the development and execution of new test cases to test the 
modifications; in addition to the re-execution of the earlier test cases, to test the software stability 
after enhancements (Catal & Mishra, 2013). Testing the behavior of the whole system under test 
(SUT) before release and after each modification is called regression testing (Leung & White, 1989; 
Rosero, Gómez, & Rodríguez, 2016). The cost of regression testing increases over time due to the 
increase in the test suite size. So, it is important to find the smallest representative subset of the test 
suite without compromising the fault-detection capability of the original test suite (Gotlieb & Marijan, 
2014; Nadeem & Awais, 2006). This problem is known as test suite reduction problem (TSR). One 
way to assess the capabilities of the reduced test suite, in discovering bugs, is through the utilization 
of a fault-based testing technique called mutation testing. Mutation testing calculates a score for the 
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test suite which indicates its capabilities on discovering bugs in the SUT (Jia & Harman, 2010). The 
TSR problem is known to be a combinational optimization problem that can be described as a set 
covering problem which is known to be NP-complete (Gary & Johnson, 1979). In practice, there is 
no efficient solution for NP-complete problems. However, suboptimal solutions could be found using 
search-based optimization (SBO) algorithms (Chen & Lau, 1998). Bat algorithm (BA) is a recent and 
efficient SBO algorithm, which mimics the echolocation behavior of bats to find a global optimal 
solution (Yang, 2010). The performance of the BA was reported in the literature to be superior to 
other SBO algorithms such as the particle swarm optimization (PSO) (Eberhart & Kennedy, 1995; A 
Hamdy & Mohamed, 2019) and Genetic algorithms (GA) (Abeer Hamdy, 2014), over the majority 
of benchmark functions and real applications.

Aims and Contributions
The aim of this paper is to reduce the cost of the regression testing, through reducing the test suite 
size using the BA. Our contributions to accomplish this aim are summarized as follows:

•	 Proposing modifications to the Original Binary Bat Algorithm (OBBA) (Mirjalili, Mirjalili, & 
Yang, 2014) to enhance its exploration and exploitation capabilities; so to reduce its occasionally 
failure to converge to global optimum solutions.

•	 Formulating the TSR problem in terms of two objectives which are: the cost of the reduced test 
suite and the mutation score. Then, applying the variable weighted sum method (Yang, 2011) 
to guide the Adapted binary BA (ABBA) search for the non-dominated solutions that form a 
Pareto-optimal surface.

•	 Evaluating the performance of the ABBA against each of the OBBA and the Binary Particle 
Swarm Optimization BPSO (Bansal et al., 2011) in solving the multi-objectives TSR problem 
over six Java programs of different test suite sizes and different number of mutants.

The rest of the paper is organized as follows: Section 2 introduces some important preliminaries 
for this work. Section 3 discusses the previous studies that tackled the TSR problem. Section 4 
presents the multi-objective adapted binary bat algorithm for solving the TSR problem. Section 5 
discusses the experiments and results. Finally, Section 6 concludes the paper and introduces possible 
extensions to this work.

BACKGROUND

Test Suite Reduction Problem

Given: A test suite TS   which includes d  test cases, and a set of n  mutants mu mu
n1

, ,…{ } , that 
should be killed to provide an adequate testing of the SUT. Each test case tc

j
 can kill one or 

more mutants mu
i
.

Problem: Find an adequate subset T S TS
'

⊆  that can kill as many as possible number of mutants 
and includes as few as possible number of test cases. These two objectives are contradictory; 
this is the reason we formulated the TSR problem as a multi-objective optimization problem. 

Pareto Optimal Concepts
In multi-objective optimization problems, there is no single solution but a set of multiple trade-off 
solutions (Ngatchou, Zarei, & El-Sharkawi, 2005). The vector of decision variables that optimizes 
the considered objective functions and satisfy the problem constrains is called a Pareto front. Thus, 
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the Pareto front is a set of Pareto solutions which are not dominated by any other solution as shown 
in Figure 1. A solution x x x x

n
= 


1 2

, ,...,  is said to dominate a solution y y y y
n

= 

1 2

, ,..., , if and 
only if y  is not better than x  for any objective i n= 1 2, ,..., , and there exist at least one objective 
x
i
 in x  which is better than its corresponding objective y

i
 in y . A better solution means it has a 

minimum value when the problem is minimization and on the contrary in maximization problem. 
On the contrary, two solutions are said to be non-dominated when none of them dominates the other. 
Figure 1 depicts the difference between dominated and non-dominated solutions and represents the 
Pareto front. In the figure, the objective functions f1  and f 2  are to be minimized. It is obvious that 
solution A dominates solution D because f A f D1 1( ) < ( )  and f A f D2 2( ) < ( ) . Moreover the 
solutions A B C,  and  are non-dominated solutions because none of them is better than the others 
in both objectives; as A  is the best for objective f1 , whereas C  is the best for f 2  objective, and 
B  is better than A  for objective f 2  and better than C   or the objective f1 . The set of high-quality 
solutions of the multi-objective optimization problem is called the Pareto optimal set, and its 
representation in the objective space is the Pareto front. This set satisfy two properties: (i) any solution 
found is dominated by at least one solution in the Pareto set, and (ii) every two solutions in the set 
are non-dominated to each other. Generating the Pareto front assists the decision maker to take an 
informed decision through providing him with a wide range of solutions, Pareto set, that are optimum 
from different point of view.

Particle Swarm Optimization Algorithm
PSO is one of the swarm intelligence algorithms that was proposed in 1995 by Eberhart et al. 
(Eberhart & Kennedy, 1995). It is inspired by the social behavior of bird flocks that collaboratively 
work together to reach the point that has the most resources. The whole flock is called swarm, while 
each bird in the swarm is called a particle. Each particle is a solution in the search space and has 
three attributes namely, velocity, position, and best explored position by the particle. The velocity 
attribute guides the particle motion to its next position. The particle’s position is updated every 
iteration according to: (i) the particle’s current velocity value, (ii) the global best position that was 
found by the swarm, and (iii) the best explored position found by the particle. The PSO algorithm 
iterates for a predetermined number of iterations or until a minimum error value is achieved. PSO 
was originally developed for real valued spaces, but in 1997, Kennedy et al. (Kennedy & Eberhart, 
1997) introduced a binary version of PSO (BPSO) for discrete optimization problems. In the BPSO 

Figure 1. A sample representation of dominated, non-dominated solutions and a Pareto front
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particle’s position is represented using a binary value, 0 or 1. The velocity of a particle is defined as 
the probability that a particle changes its position.

Bat Algorithm
Bat algorithm (BA) is a one of the recent metaheuristic swarm intelligence optimization algorithms 
which is proposed by Yang (Yang, 2010). BA was inspired by the behavior of the micro-bats. A bat 
b
i
 flies randomly with velocity V

i
 at position X

i
 with a frequency F

i
, varying wavelength λ

i i i
V F=  

and loudness A
i
 to search for a food/prey in a d  dimensional search space. The BA starts with 

generating randomly the initial population of bats. The values of the parameters of each bat b
i
 are 

updated over the iterations according to Eq. (1) - Eq. (3):

V t V t X t Gbest F
i i i i
+( ) = ( )+ ( )−( )1 	 (1)

X t X t V t
i i i
+( ) = ( )+ +( )1 1 	 (2)

F F F F
i min max min
= + −( )β 	 (3)

where, F
i
 is the i th bat frequency value, F

min
 and  F

max
 are the minimum and maximum frequency 

values respectively, β  is a random number of a uniform distribution, 𝐺𝑏𝑒𝑠𝑡 is the current global best 
location (solution). The bats perform a random walk procedure which is defined by Eq. (4) for 
exploring the space:

X X A
new old

t= + ε 	 (4)

where, ε  is a random number in the range −

1 1, . At  is the average loudness of all the bats at time 

t . It could be stated that the BA is a balanced combination of the PSO and the intensive local search 
algorithms. The balance between these two techniques is controlled by both loudness A( )  and the 
pulse emission rate r( )  which are updated according to Eq. (5) and Eq. (6):

A t A t
i i
+( ) = ( )1 α 	 (5)

r t r exp t
i i
+( ) = ( ) − −( )



1 0 1 γ 	 (6)

where, α  and γ  are constants; α .is analogous to the cooling factor in the simulated annealing (SA). 
Mirjalili et al. (Mirjalili et al., 2014) proposed the OBBA to solve optimization problems in the 

binary search space. In the OBBA the bat’s position is changed from one to zero or vice versa based 
on the probability of the bat’s velocity according to Eq. (7) and Eq. (8):
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v V t arctan V t
i
k

i
k+( )( ) = +( )











1
2

2
1

π
π 	 (7)

x t
x t if rand v V t

x ti
k i

k
i
k

i
k

+( ) = ( ) < +( )( )
( )

−

1
11( )        

            if rand v V t
i
k≥ +( )( )








1
	 (8)

where x t
i
k ( )  and V t

i
k ( )  is the position and velocity of i th particle at iteration t  in k th dimension, 

and ( )x t
i
k ( ) −1  is the complement of x t

i
k ( ) .

LITERATURE REVIEW

Researchers proposed a significant number of approaches to reduce the size of the test suite, with no 
loss of quality (Bhatia, 2020; Mohapatra, Mishra, & Prasad, 2020; Xue & Li, 2020). TSR approaches 
can be categorized into three main categories: (i) Greedy based (Assi, Masri, & Trad, 2018; Lin, 
Tang, Wang, & Kapfhammer, 2017), (ii) Clustering based (Coviello et al., 2018) and (iii) Search 
based (Geng, Li, Zhao, & Guo, 2016; Xue & Li, 2020).

Greedy based approaches utilize one of the greedy algorithms to determine the reduced test suite 
based on the current best strategy. Over each iteration greedy algorithm adds to the reduced test suite 
the test case that has the highest coverage (local optimal solution); it stops when the desired percentage 
of coverage is reached. Greedy approaches are able to find a minimal-cardinality test suite but with 
some loss in fault-detection capability. On the other hand, clustering based approaches utilize one 
or more of the clustering algorithms to group similar test cases together according to a predefined 
similarity measure. Then a sampling mechanism is applied to select one or more test cases from 
each cluster to be included in the reduced test suite, while, the rest of the test cases are discarded. 
Finally, search-based approaches employ heuristic algorithms to search for a near-optimal solution. 
A fitness function based on cost and/or effectiveness measures is used to guide the search. Search-
based approaches could be classified according to the search algorithm utilized into single objective 
(Mohanty, Mohapatra, & Meko, 2020; Sun & Wang, 2010) or multi-objective optimization (Coviello 
et al., 2018; Gupta, Sharma, Pachariya, & Sciences, 2020; Khan, Lee, Javaid, & Abdul, 2018; Wang, 
Ali, & Gotlieb, 2015; Wei et al., 2017; Yoo & Harman, 2007).

The multi-objective TSR optimization aims at establishing an acceptable tradeoff between the 
mentioned cost and effectiveness measures. However, according to a survey study conducted by Khan 
et al. (Khan et al., 2018) the majority of the previous TSR search based approaches (79%) are single-
objective optimization. The work of Yoo and Harman (Yoo & Harman, 2007) is considered the first 
work that applies multi-objective optimization for test suite minimization. They utilized two versions 
of the non-dominated sorting genetic algorithm II (NSGA-II) and implemented a weighted sum 
greedy technique. They proved experimentally that the NSGAII is superior to the greedy approaches 
in case of multi-objective optimization. Geng et al. (Geng et al., 2016) utilized NSGA-II heuristic 
algorithm to minimize test suite and achieve high fault detection rate and fault localization accuracy. 
Their experiments show promising results in the reduction percentage of the test suite with high fault 
detection rate and fault localization accuracy. Wang et al. (Wang et al., 2015) aimed at reducing the 
test suite of product lines software. They proposed three weight-based genetic algorithms, where 
the different objectives are weighted summed together to form a single objective fitness function 
that guides the GA during the search for a pareto front. They compared the performance of their 
proposed weight-based genetic algorithms to the performance of seven other popular multi-objective 
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search algorithms including: NSGA-II, strength pareto evolutionary algorithms (SPEA) and Speed-
constrained Multi-objective Particle Swarm Optimization (SMPSO). Their experimental results 
showed that the Random-Weight genetic algorithm is the superior algorithm. Wei et al. (Wei et al., 
2017) proposed a many-objective optimization approach based on mutation testing for test suite 
reduction. They used the mutation score as a major objective tighter with cost and some standard 
well-known coverage criteria such as: statement coverage, branch coverage, and Modified Condition/
Decision Coverage. They compared among six evolutionary multi-objective optimization algorithms 
including NSGAII and several variants of the multi-objective’s decomposition-based evolutionary 
algorithm (MOEA/D). Their experimental results showed the superiority of the NSGAII over small 
programs but over large programs (space) the MOEA/D was superior. They also showed that the using 
the “mutation score” in the fitness function improved the performance. Gupta et al. (Gupta et al., 2020) 
proposed a code and mutant coverage based multi-objective approach for test suite reduction using 
NSGA-II algorithm. Their experiments showed promising result in the reduction percentage of the 
test suite and their fault detection capability. Agrawal et al. (Agrawal, Choudhary, Kaur, & Pandey, 
2019) proposed fault coverage-based test suite optimization method based on Harrolds–Gupta–Soffa 
(HGS). Their performance measures are fault coverage, execution time and reduced optimized test 
suite size. Experimental results showed that their utilized technique outperforms the Greedy method, 
Additional Greedy, HGS, and Enhanced HGS.

The approach proposed in this paper is a search-based approach. The authors adapted one of the 
recent heuristic algorithms OBBA which proved its superiority over other evolutionary algorithms in 
different contexts (Chawla & Duhan, 2015; Jayabarathi, Raghunathan, & Gandomi, 2018). However, 
the OBBA occasionally fails to discover the global best solution for some multi modal functions; 
in addition, the OBBA is used for solving single objective optimization problems. So, we proposed 
modifications to the OBBA and utilized it to minimize the test suite size, without loss in its fault 
detection capability. In this paper the fault detection capability of the test suite was assessed using 
the mutation testing, as mutation testing has been recommended by a number of researchers as an 
effective method for assessing the quality of a test suite. Walsh (Walsh, 1985) empirically found that 
mutation testing is more effective than statement and branch coverage. Additionally, Frankl et al. 
(Frankl, Weiss, & Hu, 1997) and Offutt et al. (Offutt, Pan, Tewary, & Zhang, 1996) confirmed that 
finding faults using mutation testing is more powerful than using data flow-based testing. Finally, 
the recent empirical study of Andrews et al. (Andrews, Briand, Labiche, & Namin, 2006) reported 
that the mutation analysis is potentially useful in evaluating and comparing test suites.

PROPOSED MULTI-OBJECTIVE ABBA FOR TSR

TSR Solution Encoding

Consider that each bat b
i
 has a position vector X

i
  that represents a solution to the TSR problem, 

i.e., each X
i
 represents a reduced test suite. X

i
 is encoded as a binary vector X

i
 = (x

i1
, x

i2
, …., 

x
id

, where, d is the size of the original test suite (the total number of test cases), each bit x
ij

 corresponds 
to a test case tc

j
, the bit value is equal to “1” or “0”. The value of “1”/”0” means that tc

j
 is included/

excluded in the test suite, respectively.
Each tc

i
 is represented using a binary vector of size n, where n is the total number of mutants 

of a SUT, tc mu mu mu
i i i in
= …( )1 2

, , , , where a bit mu
ij

 corresponds to the mutant number j . The 
value of the bit mu

ij
 is set to equal “1”/”0” if tc

i
 kill/do not kill the mutant number j .
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Adapted Binary Bat Algorithm (ABBA)
Generally, the characteristics of any search algorithm including the BA is affected by two crucial 
capabilities which are: 1) exploration and 2) exploitation. Exploration is the ability of an algorithm 
to find promising solutions by searching various unknown regions. While, exploitation leads the 
algorithm to the best solution among the discovered ones. Exploration capability can get the algorithm 
away from a local optimum it gets stuck in; while exploitation capability increases the convergence 
speed of an algorithm. To enhance the performance of any search algorithm including the BA, it 
is important to keep the balance between the global and local search, such that the global search 
is amplified at the early iterations. While the local search is amplified at the late iterations so the 
algorithm converges to the global optimum.

The update formula of the bat velocities, V t
i
+( )1 , includes two components. The first component 

is the previous velocity of the bat, V t
i ( ) , which is responsible for the global search (exploration). 

As, V t
i ( )  directs the bat to keep its velocity and direction, thus it overflows the search space. While 

the second component, ( )X t Gbest F
i i( )− , is responsible for the local search (exploitation). As it 

directs all the bats to a region near to the best-found global solution (𝐺𝑏𝑒𝑠𝑡). So, the following 
modifications were proposed to the V t

i
+( )1  formula: Firstly, multiplying the term V t

i ( )  by an 
inertia weight factor " "w , which is given by Eq. (9). The value of w  will decrease linearly over 
iterations. The inertia weight was recommended by a number of previous studies that aimed at 
enhancing each of the BA [11] and the PSO (Bansal et al., 2011; Xin, Chen, & Hai, 2009):

w w w w
iter

iter
= − −( )










max max min
max

	 (9)

where w
max

 and w
min

 are pre-determined constant iter iter is the current iteration number  ,
max

 
is the maximum number of iterations.

The other suggested modification is to assume that each bat emits two frequencies instead of 
one before the bat decides on its moving direction. The first frequency is directed towards the location 
of the Gbest , while the second frequency is directed towards a randomly selected best solution 
discovered over the previous iterations Rbest . Any of the previously discovered best solutions could 
be a candidate for a global optimum solution. This way each bat benefits from the experiences of the 
other bats. Consequently, Eq. (1) is amended as follows:

V t w V t X t Gbest F X t Rbest F
i i i i i i
+( ) = ( )( )+ ( )−( ) + ( )−( )1

1 2
	 (10)

F F F F
i i i i1 2

1= = −( )δ δ, 	 (11)

δ δ= ( ) −min
max

1
iter

iter 	 (12)
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where Rbest  is a randomly selected best solution other than the Gbest . δ  increases non-linearly 
from δ

min
 to 1 which increases the impact of the location of the Gbest  over the iterations, so the bats 

converge to the Gbest .

Multi-Objective Fitness Function
The formulation of the fitness function is crucial for the evolutionary algorithms; as it is used for 
assessing the discovered solutions and consequently guides the search process. In this paper, the aim 
of the ABBA is to select from a given test suite the smallest set of test cases that could kill the largest 
number of mutants; which are two contradictory objectives. To formulate the fitness function, we 
used the weighted sum method which is simple and traditional method for multi-objective optimization. 
it produces a pareto optimal set of solutions by changing the weights among the objectives functions. 
Yang (Yang, 2011) showed experimentally that the weighted sum method for combining the multi-
objectives into a single-objective is very efficient even with highly nonlinear problems, complex 
constraints and diverse Pareto optimal sets. Moreover, Wang et al. (Wang et al., 2015) showed that 
the weighted- based GA (multi-objective GA based on weighted sum method) is superior to some 
popular multi-objective algorithms, e.g., NSGAII and SPEA. The fitness function used in this work 
is defined by Eq. (13) and Eq. (14), the best solution is the one that maximizes the fitness :

fitness weight
Killed mu

mu
weight

tc

Reduced TS
= +

1 2
*

 
*

 
	 (13)

weight weight
iter iter

iterinit

n

1
1 1= + −( ) −









max

max

,wweight weight
2 1

1= − 	 (14)

where Killed mu  is the number of killed mutants by the reduced size test suite, mu  is the total 
number of mutants, tc  is the total number of test cases, Reduced TS  is the size of the reduced 
test suite, weight weight

1 2
,  are the weights used to find the pareto optimal set of solutions and they 

are defined using Eq. (14). Where, weight
init

 denotes the initial value of weight
1
, iter  is the current 

iteration number, and 𝑛 is a  modulation index. With the increase in the iteration the value of weight
1
 

increases from weight
init

 to 1, whereas weight
2

 decrease from (1 - weight
init

) to 0. The values of 
weight and weight

1 2
   determine the importance of each objective to the fitness function. Large 

values of weight
1
, the solutions with large number of killed mutants are more preferred. In contrary 

with large values of weight
2

, the solutions with minimum number of test cases are more preferred. 
The different values of weight weight

1 2
,  produce different non-dominated solutions with sufficient 

diversity; so the Pareto front can be approximated correctly. Algorithm 1 shows the basic steps of 
the multi-objective ABBA.

EXPERIMENTS AND RESULTS

Research Questions
The experiments were designed to answer the following research questions:
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RQ1: Does the performance of the ABBA surpasses the performance of the OBBA and the BPSO 
in solving the test suite reduction problem?

RQ2: Is the ABBA scalable, i.e. How does the increase in the test suite size and the number of mutants 
impact the performance of the ABBA?

Data Sets
We used a free available dataset (1), which was used in previous studies (Offutt, Lee, et al., 1996; 
Offutt & Lee, 1994; Pargas, Harrold, & Peck, 1999; Polo, Piattini, & García‐Rodríguez, 2009; Usaola, 
Mateo, & Lamancha, 2012). The dataset includes six Java programs; their characteristics are listed 
in Table 1, which are the software size in terms of the Line of Code (LOC), number of first-order 
mutants ( mu ) generated by the MuJava tool (2), and the test suite size ( tc ) which are automatically 
generated using testooj tool (3). The programs are arranged in Table 1 according to the test suite size 
from the smallest to the largest. It should be noted that the value of the ( tc ) is not proportional to 
the value of the ( mu ) or the (LOC).

Performance Metrics
Three metrics were used in the performance evaluation which are: (1) the fitness function values 
fitness , (2) Speed of convergence to the best solution measured in terms of the number of iterations 
i  and (3) the fault detection rate (FDR) of the test suite calculated using equation (15) as follows:

FDR
Number of killed mutants

Total number of mutants
=

   

   
	 (15)

The higher the value of the ( fitness ), the better is the discovered solution. The higher the value 
of the FDR, the more capable is the test suite on discovering the faults. The lower the value of the (
i ), indicates that the algorithm converges faster to the best solution.

As the evolutionary algorithms are stochastic, N independent runs were performed over each 
dataset (in this paper N was set to equal 10). Then the mean and standard deviation (SD) of each 
metric was calculated at the end of the runs. The mean and SD of f  are calculated by Eqs. (16), (17) 
respectively:

mean f N
k

N

k
=










=
∑

1

/ 	 (16)

SD
f mean

N
k

N

k
=

−
=∑ 1

2( )
	 (17)

where, N is the number of runs, f
k

 is the fitness of the best solution discovered during the run number 
k . 

The smaller the value of the SD, the more robust is the algorithm, as small SD values indicate 
that the algorithm can find acceptable solutions in the different runs, with small discrepancy.
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Parameter Setting
The selection of the parameter values of the evolutionary algorithms has an impact on their 
performance. The authors experimented with the most recommended values for the parameters in 
literature (Carvalho, da Rocha, Silva, da Fonseca Vieira, & Xavier, 2017). Table 2 lists the parameter 
values that achieved the best performance. Table 3 lists the values of weight1 and weight2 which 
were used to calculate 10 non-dominated solutions on the Pareto surface.

Results
The fitness mean and SD values of the non-dominated solutions found by each of the ABBA, OBBA 
and BPSO, and their corresponding convergence speeds, measured in terms of the mean and SD of 

Algorithm 1. Multi-objective adapted binary bat algorithm (ABBA)

Table 1. Experimental Software Under Test (SUT)

SUT LOC mu tc

MBisectOk 31 44 25

MFourBall 47 168 96

MMidOK 59 138 125

MFindOk 79 179 135

MTringle 61 239 216

MBubCorrect 54 70 256
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the number of iterations required to discover the best solutions are shown in Table 4. Table 5 lists the 
sizes of the reduced test suites, their corresponding number of killed mutants and fault detection rates.

Answer to RQ1
It could be observed from Table 4, that the ABBA algorithm surpasses both of the BPSO and 
OBBA in terms of the mean fitness values of the discovered non-dominated solutions, across the six 
Java programs. Moreover, the fitness standard deviation values of the 10 non-dominated solutions 
discovered by the ABBA are very small; most of them are equal to zero or approaches zero which 
indicates the robustness of the ABBA. However, the BPSO could converge to solutions close to the 
ones discovered by the ABBA over the small size program MBisectOK, e.g. the non-dominated 
solutions (NDS) number 1, 4, 7 and 9 of the MBisectOk program.

In terms of the convergence speed, the ABBA could converge to the best solutions in less 
number of iterations than the OBBA over the six Java programs except MBisectOk (NDS 2,7,8,9, 
10), MbubCorrect (NDS 8, 10) and MTringle (NDS 9); where, the OBBA converged faster than 
the ABBA. Nevertheless, the ABBA converged to better solutions than the ones discovered by the 
OBBA. So. It could be stated that the OBBA was prematurely converged in these cases. It should be 

Table 2. Parameter settings for ABBA, OBBA, and BPSO

Parameter Value

ABBA OBBA IBPSO

Population size 40 40 40

Max iteration 100 100 100

Stopping criterion Max iteration Max iteration Max iteration

F
min 0 0 -

F
max 2 2 -

A 0.9 0.9 -

r 0.1 0.1 -

ε [-1,1] - -

α 0.9 0.9 -

γ 0.9 0.9 -

w
max

, w
min 0.8, 0.4 - -

Modulation index, n 2 - -

δ
init 0.6 - -

C C
1 2
, - - 1.5, 1.2

W - - 2

Max velocity - - 6
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noted that the MBisectOk, MbubCorrect and MTringle are of different sizes. Furthermore, it could 
be observed that the ABBA converges faster than the BPSO across the six Java programs.

In terms of the size of the reduced test suites and their fault detection capabilities, as could be 
observed from Table 5 the ABBA, in comparison to the BPSO and the OBBA, was able to discover 
the smallest reduced test suite across three programs of different sizes, MBisectOk, MbubCorrect and 
MfindOk. Moreover, the reduced test suites discovered by the ABBA have the highest fault detection 
capabilities, in terms of the number of killed mutants and FDR.

Across the MfourBall, MFindOk, MMidOK programs, the solutions found by the ABBA, in 
comparison to the OBBA and the BPSO, either have the highest fault detection capabilities but at the 
expense of the sizes of the discovered reduced test suites, e.g. MfourBall program; or the solutions 
have the smallest reduced test suite sizes but with less fault detection capabilities. So, the selection of 
the best solution across MfourBall, MFindOk, MMidOK depends on the testers’ targets and testing 
budgets.

Fig. 1 shows sample convergence curves of the ABBA, OBBA and BPSO over the six programs. 
As could be observed that the ABBA converge faster and to better solutions, in terms of the fitness 
function values, than the OBBA and the BPSO, although the parameters settings of both of the ABBA 
and the OBBA are the same.

Answer to RQ2
We experimented with six Java programs with different search space sizes. The size of the test suite 
and the number of mutants are the indicators of the size of the search space. As could be observed 
from table 4 that the performance of the ABBA, in terms of the mean and SD of best fitness, is 
superior to the OBBA and the BPSO over the six programs of different search space sizes, which 
indicates that the ABBA is scalable.

CONCLUSION AND FUTURE WORK

This paper proposed a search-based optimization methodology for reducing the cost of the regression 
testing, through reducing the size of the test suite, with minimum or no loss of fault discovery 
capabilities. The proposed methodology is based on formulating the TSR problem as a multi-objective 
optimization problem, in terms of the test suite size and mutation score. Then, the original BBA was 
modified to enhance its exploration capabilities and boost its performance. Finally, a weighted sum 
strategy was utilized to guide the ABBA during the search for a Pareto front.

The effectiveness of the proposed ABBA in solving the TSR problem was evaluated using six 
Java programs. The experimental results showed that the performance of the proposed ABBA is 
superior to each of the OBBA and BPSO. In addition to, the ABBA converged to the best solutions 
faster than each of the OBBA and the BPSO.

As a further extension for this work, we plan to redefine the fitness function by considering more 
objectives such as test suite execution time and branch coverage. In addition, different weighting 
mechanisms will be tried and compared to this work. Finally, Co-evolution based on the ABBA may 
be considered to optimize the mutation testing while optimizing the regression testing; as the mutation 
testing is known to be expensive but effective in assessing the quality of a test suite.

Table 3. Weights used during experiments to generate 10 non-dominated solutions (NDS) which represents the Pareto front

NDS 1 2 3 4 5 6 7 8 9 10

Weight1 0.6 0.676 0.744 0.804 0.856 0.9 0.936 0.964 0.984 0.9960

Weight2 0.4 0.324 0.256 0.196 0.144 0.1 0.064 0.036 0.016 0.0040
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Table 4. Comparison among the fitness values (fitness) and the convergence speed (i) of the 10 non-dominated solutions 
(NDS) discovered by the ABBA, OBBA AND BPSO

NDS Algorithm MEAN ± STD. DEV
MBisectOk MBubCorrect MFindOk MFourBall MMidOK MTringle

1 ABBA fitness 10.57 ± 0 8.34 ± 1.46 54.60 ± 0 38.62 ± 0.02 8.34 ± 1.46 11.53 ±3.25
i 15.33 ± 8.09 91.60 ± 6.28 68.50 ± 12.25 60.20 ± 23.06 69.70 ± 19.30 94.22 ± 5.95

OBBA fitness 10.52 ± 0.06 2.72 ± 0.24 4.34 ± 0.97 4.34 ± 0.97 4.69 ± 1.08 2.99 ± 0.33
i 28.30 ± 17.72 91.50 ± 8.20 92.90 ± 8.41 88.50 ± 9.31 88.80 ± 9.19 95.00 ± 4.03

BPSO fitness 10.57 ± 0.01 2.71 ± 0.19 4.69 ± 1.04 12.59 ± 4.28 5.84 ± 1.76 2.94 ± 0.38
i 67.60 ± 22.08 98.40 ± 1.58 98.70 ± 1.06 98.60 ± 1.96 99.50 ± 0.85 99.40 ± 0.97

2 ABBA fitness 8.75 ± 0 8.01 ± 2.73 44.42 ± 0 31.36 ± 0.02 8.01 ± 2.73 8.03 ± 1.25
i 29.11 ± 29.03 93.10 ± 5.53 65.60 ± 9.82 61.00 ± 29.82 73.20 ± 18.28 95.11 ± 6.68

OBBA fitness 8.73 ± 0.03 2.36 ± 0.17 3.69 ± 0.53 9.31 ± 7.96 4.72 ± 1.29 2.66 ± 0.32
i 19.30 ± 11.88 94.80 ± 3.36 80.80 ± 15.16 77.40 ± 17.06 79.10 ± 15.06 93.80 ± 5.21

BPSO fitness 8.74 ± 0.01 2.32 ± 0.13 3.94 ± 0.43 5.70 ± 0.90 4.07 ± 0.47 2.63 ± 0.16
i 68.80 ± 24.12 99.20 ± 1.03 99.30 ± 1.06 98.40 ± 1.58 99.70 ± 0.48 99.00 ± 1.33

3 ABBA fitness 7.11 ± 0.01 5.73 ± 1.33 35.16 ± 0.31 24..84 ± 0.02 5.73 ± 1.33 7.58 ± 1.47
i 25.44 ± 22.60 90.60 ± 8.14 58.00 ± 17.00 52.20 ± 25.62 74.10 ± 14.06 91.00 ± 5.36

OBBA fitness 7.07 ± 0.06 2.13 ± 0.08 3.22 ± 0.64 4.86 ± 2.87 3.74 ± 1.36 2.21 ± 0.20
i 38.50 ± 22.87 91.00 ± 7.56 81.30 ± 10.93 81.90 ± 10.87 93.50 ± 16.85 92.70 ± 8.62

BPSO fitness 7.10 ± 0.01 2.08 ± 0.14 3.11 ± 0.35 5.62 ± 2.61 3.58 ± 0.47 2.11 ± 0.12
i 70.80 ± 26.33 99.60 ± 0.84 99.60 ± 0.70 98.50 ± 1.90 99.50 ± 2.21 99.30 ± 0.82

4 ABBA fitness 5.67 ± 0 4.87 ± 0.77 27.26 ± 0 19.10 ± 0.02 4.87 ± 0.77 5.58 ± 1.60
i 20.56 ± 18.92 90.90 ± 7.46 59.50 ± 12.26 68.30 ± 24.10 76.70 ±17..78 93.11 ± 5.01

OBBA fitness 5.65 ± 0.03 1.86 ± 0.10 2.54 ± 0.37 5.49 ± 5.02 3.18 ± 1.25 1.80 ± 0.08
i 30.60 ± 21.48 93.50 ± 3.75 88.70 ± 12.20 79.90 ± 12.35 79.60 ± 6.36 91.90 ± 8.10

BPSO fitness 5.67 ± 0 1.82 ± 0.11 2.82 ± 0.30 4.46 ± 1.03 3.08 ± 0.56 1.84 ± 0.10
i 78.50 ± 10.76 98.80 ± 1.48 98.70 ± 1.64 98.90 ± 1.10 99.30 ± 0.85 99.70 ± 0.70

5 ABBA fitness 4.42 ± 0 3.70 ± 0.61 20.13 ± 0.35 14.14 ± 0.02 3.70 ± 0.61 3.82 ± 0.72
i 20.44 ± 9.88 92.70 ± 7.63 69.20 ± 11.13 55.70 ± 23.31 67.40 ± 21.57 93.78 ± 5.80

OBBA fitness 4.31 ± 0.13 1.61 ± 0.06 2.13 ± 0.24 3.84 ± 3.64 2.34 ± 0.25 1.58 ± 0.07
i 31.90 ± 22.20 92.90 ± 7.65 91.50 ± 6.11 79.80 ± 12.67 89.30 ± 7.15 92.50 ± 9.92

BPSO fitness 4.41 ± 0.01 1.61 ± 0.07 2.45 ± 0.33 3.25 ± 0.64 2.48 ± 0.23 1.58 ± 0.09
i 81.80 ± 9.11 99.80 ± 0.42 99.00 ± 0.94 99.00 ± 1.56 99.50 ± 1.08 99.10 ± 0.74

6 ABBA fitness 3.36 ± 0.01 2.95 ± 0.84 14.40 ± 0 9.93 ± 0.03 2.95 ± 0.48 3.18 ± 0.92
i 19.89 ± 15.83 91.70 ± 6.06 68.20 ± 10.46 57.80 ± 23.71 75.20 ± 20.57 94.56 ± 4.33

OBBA fitness 3.29 ± 0.09 1.49 ± 0.06 1.80 ± 0.26 2.14 ± 0.25 1.92 ± 0.20 1.40 ± 0.04
i 26.10 ± 22.48 92.50 ± 7.92 89.30 ± 13.48 81.70 ± 14.68 87.00 ± 13.50 96.20 ±4.54

BPSO fitness 3.35 ± 0.02 1.40 ± 0.03 2.03 ± 0.22 3.44 ± 2.37 2.03 ± 0.23 1.37 ± 0.03
i 64.00 ± 18.01 98.60 ± 2.01 99.00 ± 1.25 99.60 ± 0.97 99.60 ± 0.97 99.80 ± 0.42

7 ABBA fitness 2.49 ± 0.01 2.36 ± 0.36 8.96 ± 1.36 6.48 ± 0.03 2.36 ± 0.36 2.07 ± 0.29
i 26.33 ± 21.42 90.60 ± 5.48 54.80 ± 10.38 67.20 ± 19.72 69.90 ± 16.3 91.56 ± 5.08

OBBA fitness 2.46 ± 0.04 1.29 ± 0.04 1.55 ± 0.11 1.72 ± 0.21 1.56 ± 0.10 1.24 ± 0.02
i 18.40 ± 16.81 94.10 ± 4.01 91.90 ± 8.33 71.40 ± 19.13 85.00 ± 15.63 93.30 ± 5.60

BPSO fitness 2.49 ± 0.01 1.27 ± 0.01 1.58 ± 0.10 2.41 ± 1.45 1.64 ± 0.17 1.22 ± 0.02
i 74.10 ± 6.97 99.50 ± 0.85 99.30 ± 1.06 98.20 ± 1.23 99.50 ± 0.53 99.50 ± 0.71

8 ABBA fitness 1.82 ± 0 1.70 ± 0.10 5.73 ± 0.30 3.80 ± 0.03 1.70 ± 0.10 1.45 ± 0.08
i 29.67 ± 20.35 93.90 ± 4.53 69.30 ± 17.21 73.70 ± 16.79 76.80 ± 12.39 93.56 ± 6.88

OBBA fitness 1.76 ± 0.06 1.16 ± 0.02 1.30 ± 0.05 1.41 ± 0.09 1.33 ± 0.10 1.13 ± 0.01
i 21.00 ± 13.44 92.70 ± 7.62 89.90 ± 14.70 79.10 ± 14.55 89.80 ± 9.73 94.40 ± 4.65

BPSO fitness 1.80 ± 0.04 1.15 ± 0.01 1.35 ± 0.12 1.54 ± 0.13 1.35 ± 0.09 1.13 ± 0.01
i 76.50 ± 25.25 99.10 ± 1.37 98.20 ± 1.93 98.50 ± 1.27 99.20 ± 0.92 98.90 ± 1.20

9 ABBA fitness 1.33 ± 0.01 1.31 ± 0.09 3.05 ± 0.31 1.36 ± 0 1.31 ± 0.09 1.19 ± 0.03
i 22.22 ± 26.71 90.00 ± 9.83 68.50 ± 20.70 56.90 ± 23.41 79.30 ± 15.41 91.44 ± 6.06

OBBA fitness 1.30 ± 0.04 1.07 ± 0.01 1.13 ± 0.03 1.17 ± 0.04 1.13 ± 0.03 1.06 ± 0.01
i 21.90 ± 14.04 93.90 ± 6.98 89.90 ± 7.48 74.90 ± 16.13 85.90 ± 14.83 87.20 ±10.26

BPSO fitness 1.33 ± 0.01 1.06 ± 0.01 1.14 ± 0.03 1.21 ± 0.07 1.14 ± 0.02 1.05 ± 0
i 75.60 ± 20.22 95.90 ± 11.23 98.50 ± 1.27 99.00 ± 1.25 99.60 ± 0.52 99.60 ± 0.52

10 ABBA fitness 1.05 ± 0 1.08 ± 0.02 1.54 ± 0 1.08 ± 0.01 1.08 ± 0.02 1.04 ± 0
i 42.22 ± 30.97 92.50 ± 6.08 64.30 ± 13.65 54.30 ± 21.68 76.50 ± 14.16 88.56 ± 11.28

OBBA fitness 1.04 ± 0.01 1.02 ± 0 1.03 ± 0.01 1.04 ± 0.01 1.03 ± 0.01 1.01 ± 0
i 21.90 ± 18.78 89.40 ± 8.37 90.50 ±6.52 83.40 ± 12.03 90.30±9.32 91.60 ± 7.88

BPSO fitness 1.05 ± 0.01 1.02 ± 0 1.03 ± 0.01 1.05 ± 0.01 1.03 ± 0.01 1.01 ± 0
i 71.90 ± 16.63 99.40 ± 0.84 98.40 ±2.22 99.50 ± 0.71 99.40±0.70 99.20 ± 0.92
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Table 5. Comparison among the 10 non-dominated solutions discovered by the ABBA, OBBA and BPSO in terms of the fault 
detection rate (FDR), number of killed mutants (KM) and size of reduced test suite (RTS)

NDS Algorithm MEAN ± STD. DEV

MBisectOk MBubCorrect MFindOk MFourBall MMidOK MTringle

1 ABBA FDR 95.45 ± 0 96.3 ± 0.32 99.4 ± 0 37.4 ± 4.02 41.6± 11.06 73.7± 30.08

KM 42 ± 0 67.9 ± 0.32 178 ± 0 63.2 ± 4.02 57.40 ± 
11.06

161.60 ± 30.08

RTS 1 ± 0 13.88 ± 2.70 1 ± 0 1 ± 0 1.1 ± 0.31 8.4 ± 2.32

OBBA FDR 86.4± 4.09 97.1 ± 0 99.4 ± 0 83.4± 20.99 94.7± 8.62 87.7±16.29

KM 38 ± 4.09 68 ± 0 178 ± 0 140.1 ± 20.99 130.7 ± 8.62 209 ± 16.29

RTS 1 ± 0 48.6 ± 5.19 15.3 ± 3.80 7.9 ± 2.42 12.6 ± 2.41 35.5 ± 3.66

BPSO FDR 95.0 ± 0.6 97.1 ± 0 99.4 ± 0 61.7± 15.33 94.4 ± 6.7 87.9± 8.31

KM 41.8 ± 0.6 68 ± 0 178 ± 0 103.6 ± 15.33 130.3 ± 6.7 210.1 ± 8.31

RTS 1 ± 0 50.6 ± 4.14 13.6 ±1.78 6.3 ± 1.49 11.9 ± 1.52 34.4 ± 3.02

2 ABBA FDR 95.45 ± 0 97.0 ± 0 99.4±74.21 37.6± 3.85 41.2± 3.65 67.7± 23.96

KM 42 ± 0 68 ± 0 142.80 ± 74.21 58.8 ± 3.85 56.80 ± 3.65 164.20 ± 23.96

RTS 1 ± 0 13.75 ± 2.66 1 ± 0 1 ± 0 1.1 ± 0.32 9.5 ± 1.72

OBBA FDR 92.5 ± 1.55 97.1 ± 0 99.4 ± 0 75.4± 30.37 91.7± 11.55 91.6 ± 9.33

KM 40.7 ± 1.55 68 ± 0 178 ± 0 126.6 ± 30.37 126.5 ± 
11.55

219 ± 9.33

RTS 1 ± 0 49.5 ± 4.85 14.9 ± 2.47 4.9 ± 1.97 10.6 ± 2.84 35 ± 4.30

BPSO FDR 95.0 ± 0.6 97.1 ± 0.32 99.4 ± 0 82.6± 25.13 95.1± 11.12 86.2± 13.72

KM 41.8 ± 0.6 67.9 ± 0.32 178 ± 0 138.7 ± 25.13 131.2 ± 
11.12

206 ± 13.72

RTS 1 ± 0 50.6 ± 4.14 13.6 ±1.78 6.3 ± 1.49 11.9 ± 1.52 34.4 ± 3.02

3 ABBA FDR 95.0 ± 0.63 97.1 ± 2.83 79.8 ± 0 35.0 ± 4.98 46.9± 26.62 78.7±32.72

KM 41.8 ± 0.63 67 ± 2.83 178 ± 0 58.9 ± 4.98 64.70 ± 
26.62

173.30 ± 32.72

RTS 1 ± 0 14.63 ± 2.56 1 ± 0 1 ± 0 1 ± 0 8.2 ± 1.99

OBBA FDR 89.5 ± 3.23 97.1 ± 0 99.4 ± 0 71.2± 34.58 97.0 ± 4.92 94.1 ± 7.94

KM 39.4 ± 3.23 68 ± 0 178 ± 0 119.6 ± 34.58 133.8 ± 4.92 255 ± 7.94

RTS 1 ± 0 47.3 ± 2.75 14.8 ± 3.79 7.1 ± 2.56 12.2 ± 4.61 37.3 ± 5.56

BPSO FDR 94.5 ± 0.8 97.1 ± 0 99.4 ± 0 83.2± 30.12 94.9± 9.27 92.8± 9.69

KM 41.6 ± 0.8 68 ± 0 178 ± 0 139.7 ± 30.12 130.3 ± 9.27 221.7 ± 9.69

RTS 1 ± 0 49.5± 5.33 14.9 ± 2.08 5.7 ± 1.77 11.3 ± 1.95 39.3 ± 3.53

4 ABBA FDR 95.45 ± 0 95.7 ± 0.42 99.4± 73.58 35.1 ± 4.06 40.1± 8.42 72.5± 29.21

KM 42 ± 0 67.8 ± 0.42 143.10 ± 73.58 62.3 ± 4.06 55.40 ± 8.42 179.30 ± 29.21

RTS 1 ± 0 12.88 ± 2.80 1 ± 0 1 ± 0 1.3 ± 0.68 9.20 ± 2.62

OBBA FDR 93.0 ± 1.58 97.1 ± 0 99.4 ± 0 76.7± 42.40 91.8± 14.41 95.9± 2.57

KM 40.9 ± 1.58 68 ± 0 178 ± 0 128.9 ± 42.40 126.7 ± 
14.41

229.3 ± 2.57

RTS 1 ± 0 47.7 ± 5.16 15.8 ± 2.78 6.4 ± 3.34 11.4 ± 3.20 41.2 ± 3.08

BPSO FDR 95.5 ± 0 97.1 ± 0 99.4 ± 0 82.0 ± 30.60 94.9± 4.33 95.7 ± 4.89

KM 42 ± 0 68 ± 0 178 ± 0 137.8 ± 30.60 130.9 ± 4.33 228.8 ± 4.89

RTS 1 ± 0 49.8 ± 5.33 13.4 ± 2.12 5.3 ± 1.34 11 ± 2.45 40.1 ± 4.36

5 ABBA FDR 95.45 ± 0 96.9 ± 0.42 79.9±73.58 37.1 ± 4.06 41.2± 5.47 75.0± 29.21

KM 42 ± 0 67.8 ± 0.42 143.10 ± 73.58 62.3 ± 4.06 56.90 ± 5.47 179.30 ± 29.21

RTS 1 ± 0 13.86 ± 2.34 1 ± 0 1 ± 0 1 ± 0 10.30 ± 2.31

OBBA FDR 83.2 ± 6.35 97.1 ± 0 99.4 ± 0 97.6± 40.20 95.8± 0.32 97.7± 1.26

KM 36.6 ± 6.35 68 ± 0 178 ± 0 142.6 ± 40.20 132.2 ± 0.32 233.6 ± 1.26

RTS 1 ± 0 48.7 ± 3.68 15.7 ± 2.90 7.2 ± 3.05 12.1 ± 2.33 42.1 ± 3.81

BPSO FDR 95.0 ± 0.6 97.1 ± 0 99.4 ± 0 85.7± 25.01 94.7± 8.88 96.7± 2.35

KM 41.8 ± 0.6 68 ± 0 178 ± 0 144 ± 25.01 130.7 ± 8.88 231.2 ± 2.35

RTS 1 ± 0 49 ± 4.27 12.7 ± 2.71 6 ± 1.94 10.9 ± 1.59 41.8 ± 4.89

continued on following page
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NDS Algorithm MEAN ± STD. DEV

MBisectOk MBubCorrect MFindOk MFourBall MMidOK MTringle

6 ABBA FDR 41.8 ± 0.63 96.4 ± 0.71 99.4 ± 0 36.5 ± 5.33 41.5 ± 2.38 78.6± 27.23

KM 41.8 ± 0.63 67.5 ± 0.71 178 ± 0 61.3 ± 5.33 57.30 ± 2.38 187.90 ± 27.23

RTS 1 ± 0 12.75 ± 1.98 1 ± 0 1 ± 0 1 ± 0 9.80 ± 3.05

OBBA FDR 87.5 ± 4 97.1 ± 0 99.4 ± 0 93.9± 17.21 97.7 ± 2.53 98.5± 1.64

KM 38.5 ± 4 68 ± 0 178 ± 0 157.7 ± 17.21 134.8 ± 2.53 235.3 ± 1.64

RTS 1 ± 0 43.6 ± 4.85 16 ± 3.80 7.8 ± 1.69 12.3 ± 2.00 42.3 ± 3.27

BPSO FDR 94.1 ± 0.92 97.1 ± 0 99.4 ± 0 78.8± 41.94 93.6± 9.90 97.9± 3.49

KM 41.4 ± 0.92 68 ± 0 178 ± 0 132.3 ± 41.94 129.1 ± 9.90 234 ± 3.49

RTS 1 ± 0 51.5 ± 3.47 12.4 ± 2.41 5.5 ± 3.24 10.9 ± 2.29 44.6 ± 3.27

7 ABBA FDR 95.0 ± 0.63 96.9± 0.42 97.9 ± 73.58 35.9 ± 5.10 41.8± 15.72 86.4±19.42

KM 41.8 ± 0.63 67.8 ± 0.42 143 ± 73.58 60.3 ± 5.10 57.70 ± 
15.72

206.60±19.42

RTS 1 ± 0 11.63 ± 2.67 1.1 ± 0.32 1 ± 0 1.1 ± 0.32 11.7 ± 3.06

OBBA FDR 91.8 ± 1.9 97.1 ± 0 99.4 ± 0 95.9± 12.49 97.7 ± 2.71 99.8± 0.70

KM 40.4 ± 1.9 68 ± 0 178 ± 0 161.1 ± 12.49 134.7 ± 2.71 238.5 ± 0.70

RTS 1 ± 0 46.9 ± 5.15 14.5 ± 2.99 8 ± 2 12.5 ± 2.12 46 ± 3.27

BPSO FDR 95.0 ± 0.60 97.1 ± 0 99.4 ± 0 87.4 ± 33.79 98.1± 3.30 99.4± 1.84

KM 41.8 ± 0.60 68 ± 0 178 ± 0 146.9 ± 33.79 135.4 ± 3.30 237.6 ± 1.84

RTS 1 ± 0 48.7 ± 1.34 13.7 ± 2 5.7 ± 2.58 11.7 ± 2.98 48.3 ± 4.45

8 ABBA FDR 95.0 ± 0 97.1 ± 0 89.7±55.34 35.8 ± 5.15 42.0± 6.01 95.0 ±7.41

KM 42 ± 0 68 ± 0 160.50 ± 55.34 60.1 ± 5.15 57.90 ± 6.01 227 ±7.41

RTS 1 ± 0 12.25 ± 1.58 1 ± 0 1 ± 0 1 ± 0 15.9 ± 2.58

OBBA FDR 88.9 ± 2.62 97.1 ± 0 99.4 ± 0 98.5± 1.64 98.4 ± 3.08 100± 0.32

KM 39.1 ± 2.62 68 ± 0 178 ± 0 165.4 ± 1.64 135.8 ± 3.08 238.9 ± 0.32

RTS 1 ± 0 46.3 ± 4.97 14.9 ± 2.23 7.8 ± 1.87 12.6 ± 3.13 47.9 ± 3.81

BPSO FDR 93.9 ± 0.6 97.1 ± 0 99.4 ± 0 98.2± 33.79 95.7± 3.30 99.9 ± 1.84

KM 41.8 ± 0.6 68 ± 0 178 ± 0 146.9 ± 33.79 135.4 ± 3.30 237.6 ± 1.84

RTS 1 ± 0 48.7 ± 1.34 13.7 ± 2 5.7 ± 2.58 11.7 ± 2.98 48.3 ± 4.45

9 ABBA FDR 95.45 ± 0.63 96.6 ± 0 89.7±55.34 99.3 ± 0.42 41.4± 13.13 98.4 ±2.88

KM 41.8 ± 0.63 67.6 ± 0 160.50 ± 55.34 166.8 ± 0.42 57.20 ± 
13.13

235.1 ±2.88

RTS 1 ± 0 13.50 ± 4.14 1 ± 0 4 ± 0 1.1 ± 0.32 15 ± 2.77

OBBA FDR 91.4 ± 1.83 97.1 ± 0 99.4 ± 0 99.4 ± 0.94 99.9± 0.42 100 ± 0.0

KM 40.2 ± 1.83 68 ± 0 178 ± 0 167 ± 0.94 137.8 ± 0.42 239 ± 0.0

RTS 1 ± 0 47.7 ± 3.19 15 ± 2.83 8.3 ± 1.64 14 ± 2.70 49 ± 4.94

BPSO FDR 95.0 ± 1.55 97.1 ± 0 99.4 ± 0 99.2± 4.03 99.1 ± 10.39 100± 0.68

KM 41.3 ± 1.55 68 ± 0 178 ± 0 165 ± 4.03 132.1 ± 
10.39

238.7 ± 0.68

RTS 1 ± 0 48.7 ± 2.87 13.5 ± 4.03 6.1 ± 1.59 11.4 ± 3.34 47.5 ± 4.03

10 ABBA FDR 95.0 ± 1.05 97.1 ± 0 99.4 ± 0 99.3 ± 0.42 99.1 ± 1.06 100 ± 0

KM 43 ± 1.05 68 ± 0 178 ± 0 166.8 ± 0.42 136.70 ± 
1.06

239 ± 0

RTS 1.1 ± 0.3 13 ± 3.38 1 ± 0 4.2 ± 0.42 5 ± 0.67 20.6 ± 1.51

OBBA FDR 99.5 ± 0.6 97.1 ± 0 99.4 ± 0 99.9 ± 0.6 100.0± 0 100± 0.0

KM 43.8 ± 0.6 68 ± 0 178 ± 0 167.8 ± 0.6 138 ± 0 239 ± 0.0

RTS 2.6 ± 0.8 47.4±4.43 16.4 ± 3.17 9.1 ± 1.52 13.7 ± 3.09 46 ± 4.16

BPSO FDR 97.3 ± 0.68 97.1 ± 0 99.4 ± 0 99.8± 0.97 99.9± 0.32 100 ± 0

KM 42.8 ± 0.98 68 ± 0 178 ± 0 167.6 ± 0.97 137.9 ± 0.32 239 ± 0

RTS 1.6 ± 0.8 49.2 ± 4.87 14.4 ± 2.06 7.8 ± 1.93 13.2 ± 2.15 53.9 ± 4.25

Table 5.. Continued
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Figure 2. Sample convergence curves of the ABBA, OBBA and BPSO over the dataset
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