
The British University in Egypt The British University in Egypt

BUE Scholar BUE Scholar

Software Engineering Informatics and Computer Science

2021

Search-Based Regression Testing Optimization Search-Based Regression Testing Optimization

Abeer Hamdy Dr.
The British University in Egypt, abeer.hamdy@bue.edu.eg

Nagwa R. Fisal
Suez Canal University

Essam A. Rashed
Suez Canal University

Follow this and additional works at: https://buescholar.bue.edu.eg/software_eng

Recommended Citation Recommended Citation
Hamdy, Abeer Dr.; Fisal, Nagwa R.; and Rashed, Essam A., "Search-Based Regression Testing
Optimization" (2021). Software Engineering. 2.
https://buescholar.bue.edu.eg/software_eng/2

This Article is brought to you for free and open access by the Informatics and Computer Science at BUE Scholar. It
has been accepted for inclusion in Software Engineering by an authorized administrator of BUE Scholar. For more
information, please contact bue.scholar@gmail.com.

https://buescholar.bue.edu.eg/
https://buescholar.bue.edu.eg/software_eng
https://buescholar.bue.edu.eg/informatics_computer_science
https://buescholar.bue.edu.eg/software_eng?utm_source=buescholar.bue.edu.eg%2Fsoftware_eng%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://buescholar.bue.edu.eg/software_eng/2?utm_source=buescholar.bue.edu.eg%2Fsoftware_eng%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bue.scholar@gmail.com

DOI: 10.4018/IJOSSP.2021040101

International Journal of Open Source Software and Processes
Volume 12 • Issue 2 • April-June 2021

﻿
Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

1

Search-Based Regression
Testing Optimization
Nagwa R. Fisal, Suez Canal University, Egypt

Abeer Hamdy, British University in Egypt, Egypt

Essam A. Rashed, Suez Canal University, Egypt

ABSTRACT

Regression testing is one of the essential activities during the maintenance phase of software
projects. It is executed to ensure the validity of an altered software. However, as the software evolves,
regression testing becomes prohibitively expensive. In order to reduce the cost of regression testing, it
is mandatory to reduce the size of the test suite by selecting the most representative test cases that do
not compromise the effectiveness of the regression testing in terms of fault-detection capability. This
problem is known as test suite reduction (TSR) problem, and it is known to be an NP-complete. The
paper proposes a multi-objective adapted binary bat algorithm (ABBA) to solve the TSR problem.
The original binary bat (OBBA) algorithm was adapted to enhance its exploration capabilities during
the search for a Pareto-optimal surface. The effectiveness of the ABBA was evaluated using six Java
programs with different sizes. Experimental results showed that for the same fault discovery rate, the
ABBA is capable of reducing the test suite size more than the OBBA and the BPSO.

Keywords
Binary Bat Algorithm, Multi-Objective Optimization, Mutation Testing, Regression Testing, Search-Based
Software Engineering, Software Testing, Test Suite Reduction

INTRODUCTION

As software testing is known to be an expensive process, open-source software is usually released
with several bugs; e.g., at the early releases of Mozilla and Eclipse, about 170 and 120 bugs
respectively were reported daily (Abeer Hamdy & El-Laithy, 2020; Abeer Hamdy & Ellaithy,
2020; Abeer Hamdy & Ezzat, 2020). It is essential to design a cost-effective test plan that detects as
many defects as possible before the release of the open-source software to ensure the quality of the
delivered software. Especially, during the maintenance phase, enhancements and modifications are
made to the software, which necessitates the development and execution of new test cases to test the
modifications; in addition to the re-execution of the earlier test cases, to test the software stability
after enhancements (Catal & Mishra, 2013). Testing the behavior of the whole system under test
(SUT) before release and after each modification is called regression testing (Leung & White, 1989;
Rosero, Gómez, & Rodríguez, 2016). The cost of regression testing increases over time due to the
increase in the test suite size. So, it is important to find the smallest representative subset of the test
suite without compromising the fault-detection capability of the original test suite (Gotlieb & Marijan,
2014; Nadeem & Awais, 2006). This problem is known as test suite reduction problem (TSR). One
way to assess the capabilities of the reduced test suite, in discovering bugs, is through the utilization
of a fault-based testing technique called mutation testing. Mutation testing calculates a score for the

International Journal of Open Source Software and Processes
Volume 12 • Issue 2 • April-June 2021

2

test suite which indicates its capabilities on discovering bugs in the SUT (Jia & Harman, 2010). The
TSR problem is known to be a combinational optimization problem that can be described as a set
covering problem which is known to be NP-complete (Gary & Johnson, 1979). In practice, there is
no efficient solution for NP-complete problems. However, suboptimal solutions could be found using
search-based optimization (SBO) algorithms (Chen & Lau, 1998). Bat algorithm (BA) is a recent and
efficient SBO algorithm, which mimics the echolocation behavior of bats to find a global optimal
solution (Yang, 2010). The performance of the BA was reported in the literature to be superior to
other SBO algorithms such as the particle swarm optimization (PSO) (Eberhart & Kennedy, 1995; A
Hamdy & Mohamed, 2019) and Genetic algorithms (GA) (Abeer Hamdy, 2014), over the majority
of benchmark functions and real applications.

Aims and Contributions
The aim of this paper is to reduce the cost of the regression testing, through reducing the test suite
size using the BA. Our contributions to accomplish this aim are summarized as follows:

•	 Proposing modifications to the Original Binary Bat Algorithm (OBBA) (Mirjalili, Mirjalili, &
Yang, 2014) to enhance its exploration and exploitation capabilities; so to reduce its occasionally
failure to converge to global optimum solutions.

•	 Formulating the TSR problem in terms of two objectives which are: the cost of the reduced test
suite and the mutation score. Then, applying the variable weighted sum method (Yang, 2011)
to guide the Adapted binary BA (ABBA) search for the non-dominated solutions that form a
Pareto-optimal surface.

•	 Evaluating the performance of the ABBA against each of the OBBA and the Binary Particle
Swarm Optimization BPSO (Bansal et al., 2011) in solving the multi-objectives TSR problem
over six Java programs of different test suite sizes and different number of mutants.

The rest of the paper is organized as follows: Section 2 introduces some important preliminaries
for this work. Section 3 discusses the previous studies that tackled the TSR problem. Section 4
presents the multi-objective adapted binary bat algorithm for solving the TSR problem. Section 5
discusses the experiments and results. Finally, Section 6 concludes the paper and introduces possible
extensions to this work.

BACKGROUND

Test Suite Reduction Problem

Given: A test suite TS which includes d test cases, and a set of n mutants mu mu
n1

, ,…{ } , that
should be killed to provide an adequate testing of the SUT. Each test case tc

j
 can kill one or

more mutants mu
i
.

Problem: Find an adequate subset T S TS
'

⊆ that can kill as many as possible number of mutants
and includes as few as possible number of test cases. These two objectives are contradictory;
this is the reason we formulated the TSR problem as a multi-objective optimization problem.

Pareto Optimal Concepts
In multi-objective optimization problems, there is no single solution but a set of multiple trade-off
solutions (Ngatchou, Zarei, & El-Sharkawi, 2005). The vector of decision variables that optimizes
the considered objective functions and satisfy the problem constrains is called a Pareto front. Thus,

International Journal of Open Source Software and Processes
Volume 12 • Issue 2 • April-June 2021

3

the Pareto front is a set of Pareto solutions which are not dominated by any other solution as shown
in Figure 1. A solution x x x x

n
= 


1 2

, ,..., is said to dominate a solution y y y y
n

= 

1 2

, ,..., , if and
only if y is not better than x for any objective i n= 1 2, ,..., , and there exist at least one objective
x
i
 in x which is better than its corresponding objective y

i
 in y . A better solution means it has a

minimum value when the problem is minimization and on the contrary in maximization problem.
On the contrary, two solutions are said to be non-dominated when none of them dominates the other.
Figure 1 depicts the difference between dominated and non-dominated solutions and represents the
Pareto front. In the figure, the objective functions f1 and f 2 are to be minimized. It is obvious that
solution A dominates solution D because f A f D1 1() < () and f A f D2 2() < () . Moreover the
solutions A B C, and are non-dominated solutions because none of them is better than the others
in both objectives; as A is the best for objective f1 , whereas C is the best for f 2 objective, and
B is better than A for objective f 2 and better than C or the objective f1 . The set of high-quality
solutions of the multi-objective optimization problem is called the Pareto optimal set, and its
representation in the objective space is the Pareto front. This set satisfy two properties: (i) any solution
found is dominated by at least one solution in the Pareto set, and (ii) every two solutions in the set
are non-dominated to each other. Generating the Pareto front assists the decision maker to take an
informed decision through providing him with a wide range of solutions, Pareto set, that are optimum
from different point of view.

Particle Swarm Optimization Algorithm
PSO is one of the swarm intelligence algorithms that was proposed in 1995 by Eberhart et al.
(Eberhart & Kennedy, 1995). It is inspired by the social behavior of bird flocks that collaboratively
work together to reach the point that has the most resources. The whole flock is called swarm, while
each bird in the swarm is called a particle. Each particle is a solution in the search space and has
three attributes namely, velocity, position, and best explored position by the particle. The velocity
attribute guides the particle motion to its next position. The particle’s position is updated every
iteration according to: (i) the particle’s current velocity value, (ii) the global best position that was
found by the swarm, and (iii) the best explored position found by the particle. The PSO algorithm
iterates for a predetermined number of iterations or until a minimum error value is achieved. PSO
was originally developed for real valued spaces, but in 1997, Kennedy et al. (Kennedy & Eberhart,
1997) introduced a binary version of PSO (BPSO) for discrete optimization problems. In the BPSO

Figure 1. A sample representation of dominated, non-dominated solutions and a Pareto front

International Journal of Open Source Software and Processes
Volume 12 • Issue 2 • April-June 2021

4

particle’s position is represented using a binary value, 0 or 1. The velocity of a particle is defined as
the probability that a particle changes its position.

Bat Algorithm
Bat algorithm (BA) is a one of the recent metaheuristic swarm intelligence optimization algorithms
which is proposed by Yang (Yang, 2010). BA was inspired by the behavior of the micro-bats. A bat
b
i
 flies randomly with velocity V

i
 at position X

i
 with a frequency F

i
, varying wavelength λ

i i i
V F=

and loudness A
i
 to search for a food/prey in a d dimensional search space. The BA starts with

generating randomly the initial population of bats. The values of the parameters of each bat b
i
 are

updated over the iterations according to Eq. (1) - Eq. (3):

V t V t X t Gbest F
i i i i
+() = ()+ ()−()1 	 (1)

X t X t V t
i i i
+() = ()+ +()1 1 	 (2)

F F F F
i min max min
= + −()β 	 (3)

where, F
i
 is the i th bat frequency value, F

min
 and F

max
 are the minimum and maximum frequency

values respectively, β is a random number of a uniform distribution, 𝐺𝑏𝑒𝑠𝑡 is the current global best
location (solution). The bats perform a random walk procedure which is defined by Eq. (4) for
exploring the space:

X X A
new old

t= + ε 	 (4)

where, ε is a random number in the range −

1 1, . At is the average loudness of all the bats at time

t . It could be stated that the BA is a balanced combination of the PSO and the intensive local search
algorithms. The balance between these two techniques is controlled by both loudness A() and the
pulse emission rate r() which are updated according to Eq. (5) and Eq. (6):

A t A t
i i
+() = ()1 α 	 (5)

r t r exp t
i i
+() = () − −()



1 0 1 γ 	 (6)

where, α and γ are constants; α .is analogous to the cooling factor in the simulated annealing (SA).
Mirjalili et al. (Mirjalili et al., 2014) proposed the OBBA to solve optimization problems in the

binary search space. In the OBBA the bat’s position is changed from one to zero or vice versa based
on the probability of the bat’s velocity according to Eq. (7) and Eq. (8):

International Journal of Open Source Software and Processes
Volume 12 • Issue 2 • April-June 2021

5

v V t arctan V t
i
k

i
k+()() = +()











1
2

2
1

π
π 	 (7)

x t
x t if rand v V t

x ti
k i

k
i
k

i
k

+() = () < +()()
()

−

1
11()

 if rand v V t
i
k≥ +()()








1
	 (8)

where x t
i
k () and V t

i
k () is the position and velocity of i th particle at iteration t in k th dimension,

and ()x t
i
k () −1 is the complement of x t

i
k () .

LITERATURE REVIEW

Researchers proposed a significant number of approaches to reduce the size of the test suite, with no
loss of quality (Bhatia, 2020; Mohapatra, Mishra, & Prasad, 2020; Xue & Li, 2020). TSR approaches
can be categorized into three main categories: (i) Greedy based (Assi, Masri, & Trad, 2018; Lin,
Tang, Wang, & Kapfhammer, 2017), (ii) Clustering based (Coviello et al., 2018) and (iii) Search
based (Geng, Li, Zhao, & Guo, 2016; Xue & Li, 2020).

Greedy based approaches utilize one of the greedy algorithms to determine the reduced test suite
based on the current best strategy. Over each iteration greedy algorithm adds to the reduced test suite
the test case that has the highest coverage (local optimal solution); it stops when the desired percentage
of coverage is reached. Greedy approaches are able to find a minimal-cardinality test suite but with
some loss in fault-detection capability. On the other hand, clustering based approaches utilize one
or more of the clustering algorithms to group similar test cases together according to a predefined
similarity measure. Then a sampling mechanism is applied to select one or more test cases from
each cluster to be included in the reduced test suite, while, the rest of the test cases are discarded.
Finally, search-based approaches employ heuristic algorithms to search for a near-optimal solution.
A fitness function based on cost and/or effectiveness measures is used to guide the search. Search-
based approaches could be classified according to the search algorithm utilized into single objective
(Mohanty, Mohapatra, & Meko, 2020; Sun & Wang, 2010) or multi-objective optimization (Coviello
et al., 2018; Gupta, Sharma, Pachariya, & Sciences, 2020; Khan, Lee, Javaid, & Abdul, 2018; Wang,
Ali, & Gotlieb, 2015; Wei et al., 2017; Yoo & Harman, 2007).

The multi-objective TSR optimization aims at establishing an acceptable tradeoff between the
mentioned cost and effectiveness measures. However, according to a survey study conducted by Khan
et al. (Khan et al., 2018) the majority of the previous TSR search based approaches (79%) are single-
objective optimization. The work of Yoo and Harman (Yoo & Harman, 2007) is considered the first
work that applies multi-objective optimization for test suite minimization. They utilized two versions
of the non-dominated sorting genetic algorithm II (NSGA-II) and implemented a weighted sum
greedy technique. They proved experimentally that the NSGAII is superior to the greedy approaches
in case of multi-objective optimization. Geng et al. (Geng et al., 2016) utilized NSGA-II heuristic
algorithm to minimize test suite and achieve high fault detection rate and fault localization accuracy.
Their experiments show promising results in the reduction percentage of the test suite with high fault
detection rate and fault localization accuracy. Wang et al. (Wang et al., 2015) aimed at reducing the
test suite of product lines software. They proposed three weight-based genetic algorithms, where
the different objectives are weighted summed together to form a single objective fitness function
that guides the GA during the search for a pareto front. They compared the performance of their
proposed weight-based genetic algorithms to the performance of seven other popular multi-objective

International Journal of Open Source Software and Processes
Volume 12 • Issue 2 • April-June 2021

6

search algorithms including: NSGA-II, strength pareto evolutionary algorithms (SPEA) and Speed-
constrained Multi-objective Particle Swarm Optimization (SMPSO). Their experimental results
showed that the Random-Weight genetic algorithm is the superior algorithm. Wei et al. (Wei et al.,
2017) proposed a many-objective optimization approach based on mutation testing for test suite
reduction. They used the mutation score as a major objective tighter with cost and some standard
well-known coverage criteria such as: statement coverage, branch coverage, and Modified Condition/
Decision Coverage. They compared among six evolutionary multi-objective optimization algorithms
including NSGAII and several variants of the multi-objective’s decomposition-based evolutionary
algorithm (MOEA/D). Their experimental results showed the superiority of the NSGAII over small
programs but over large programs (space) the MOEA/D was superior. They also showed that the using
the “mutation score” in the fitness function improved the performance. Gupta et al. (Gupta et al., 2020)
proposed a code and mutant coverage based multi-objective approach for test suite reduction using
NSGA-II algorithm. Their experiments showed promising result in the reduction percentage of the
test suite and their fault detection capability. Agrawal et al. (Agrawal, Choudhary, Kaur, & Pandey,
2019) proposed fault coverage-based test suite optimization method based on Harrolds–Gupta–Soffa
(HGS). Their performance measures are fault coverage, execution time and reduced optimized test
suite size. Experimental results showed that their utilized technique outperforms the Greedy method,
Additional Greedy, HGS, and Enhanced HGS.

The approach proposed in this paper is a search-based approach. The authors adapted one of the
recent heuristic algorithms OBBA which proved its superiority over other evolutionary algorithms in
different contexts (Chawla & Duhan, 2015; Jayabarathi, Raghunathan, & Gandomi, 2018). However,
the OBBA occasionally fails to discover the global best solution for some multi modal functions;
in addition, the OBBA is used for solving single objective optimization problems. So, we proposed
modifications to the OBBA and utilized it to minimize the test suite size, without loss in its fault
detection capability. In this paper the fault detection capability of the test suite was assessed using
the mutation testing, as mutation testing has been recommended by a number of researchers as an
effective method for assessing the quality of a test suite. Walsh (Walsh, 1985) empirically found that
mutation testing is more effective than statement and branch coverage. Additionally, Frankl et al.
(Frankl, Weiss, & Hu, 1997) and Offutt et al. (Offutt, Pan, Tewary, & Zhang, 1996) confirmed that
finding faults using mutation testing is more powerful than using data flow-based testing. Finally,
the recent empirical study of Andrews et al. (Andrews, Briand, Labiche, & Namin, 2006) reported
that the mutation analysis is potentially useful in evaluating and comparing test suites.

PROPOSED MULTI-OBJECTIVE ABBA FOR TSR

TSR Solution Encoding

Consider that each bat b
i
 has a position vector X

i
 that represents a solution to the TSR problem,

i.e., each X
i
 represents a reduced test suite. X

i
 is encoded as a binary vector X

i
 = (x

i1
, x

i2
, ….,

x
id

, where, d is the size of the original test suite (the total number of test cases), each bit x
ij

 corresponds
to a test case tc

j
, the bit value is equal to “1” or “0”. The value of “1”/”0” means that tc

j
 is included/

excluded in the test suite, respectively.
Each tc

i
 is represented using a binary vector of size n, where n is the total number of mutants

of a SUT, tc mu mu mu
i i i in
= …()1 2

, , , , where a bit mu
ij

 corresponds to the mutant number j . The
value of the bit mu

ij
 is set to equal “1”/”0” if tc

i
 kill/do not kill the mutant number j .

International Journal of Open Source Software and Processes
Volume 12 • Issue 2 • April-June 2021

7

Adapted Binary Bat Algorithm (ABBA)
Generally, the characteristics of any search algorithm including the BA is affected by two crucial
capabilities which are: 1) exploration and 2) exploitation. Exploration is the ability of an algorithm
to find promising solutions by searching various unknown regions. While, exploitation leads the
algorithm to the best solution among the discovered ones. Exploration capability can get the algorithm
away from a local optimum it gets stuck in; while exploitation capability increases the convergence
speed of an algorithm. To enhance the performance of any search algorithm including the BA, it
is important to keep the balance between the global and local search, such that the global search
is amplified at the early iterations. While the local search is amplified at the late iterations so the
algorithm converges to the global optimum.

The update formula of the bat velocities, V t
i
+()1 , includes two components. The first component

is the previous velocity of the bat, V t
i () , which is responsible for the global search (exploration).

As, V t
i () directs the bat to keep its velocity and direction, thus it overflows the search space. While

the second component, ()X t Gbest F
i i()− , is responsible for the local search (exploitation). As it

directs all the bats to a region near to the best-found global solution (𝐺𝑏𝑒𝑠𝑡). So, the following
modifications were proposed to the V t

i
+()1 formula: Firstly, multiplying the term V t

i () by an
inertia weight factor " "w , which is given by Eq. (9). The value of w will decrease linearly over
iterations. The inertia weight was recommended by a number of previous studies that aimed at
enhancing each of the BA [11] and the PSO (Bansal et al., 2011; Xin, Chen, & Hai, 2009):

w w w w
iter

iter
= − −()










max max min
max

	 (9)

where w
max

 and w
min

 are pre-determined constant iter iter is the current iteration number ,
max

is the maximum number of iterations.

The other suggested modification is to assume that each bat emits two frequencies instead of
one before the bat decides on its moving direction. The first frequency is directed towards the location
of the Gbest , while the second frequency is directed towards a randomly selected best solution
discovered over the previous iterations Rbest . Any of the previously discovered best solutions could
be a candidate for a global optimum solution. This way each bat benefits from the experiences of the
other bats. Consequently, Eq. (1) is amended as follows:

V t w V t X t Gbest F X t Rbest F
i i i i i i
+() = ()()+ ()−() + ()−()1

1 2
	 (10)

F F F F
i i i i1 2

1= = −()δ δ, 	 (11)

δ δ= () −min
max

1
iter

iter 	 (12)

International Journal of Open Source Software and Processes
Volume 12 • Issue 2 • April-June 2021

8

where Rbest is a randomly selected best solution other than the Gbest . δ increases non-linearly
from δ

min
 to 1 which increases the impact of the location of the Gbest over the iterations, so the bats

converge to the Gbest .

Multi-Objective Fitness Function
The formulation of the fitness function is crucial for the evolutionary algorithms; as it is used for
assessing the discovered solutions and consequently guides the search process. In this paper, the aim
of the ABBA is to select from a given test suite the smallest set of test cases that could kill the largest
number of mutants; which are two contradictory objectives. To formulate the fitness function, we
used the weighted sum method which is simple and traditional method for multi-objective optimization.
it produces a pareto optimal set of solutions by changing the weights among the objectives functions.
Yang (Yang, 2011) showed experimentally that the weighted sum method for combining the multi-
objectives into a single-objective is very efficient even with highly nonlinear problems, complex
constraints and diverse Pareto optimal sets. Moreover, Wang et al. (Wang et al., 2015) showed that
the weighted- based GA (multi-objective GA based on weighted sum method) is superior to some
popular multi-objective algorithms, e.g., NSGAII and SPEA. The fitness function used in this work
is defined by Eq. (13) and Eq. (14), the best solution is the one that maximizes the fitness :

fitness weight
Killed mu

mu
weight

tc

Reduced TS
= +

1 2
*

*

	 (13)

weight weight
iter iter

iterinit

n

1
1 1= + −() −









max

max

,wweight weight
2 1

1= − 	 (14)

where Killed mu is the number of killed mutants by the reduced size test suite, mu is the total
number of mutants, tc is the total number of test cases, Reduced TS is the size of the reduced
test suite, weight weight

1 2
, are the weights used to find the pareto optimal set of solutions and they

are defined using Eq. (14). Where, weight
init

 denotes the initial value of weight
1
, iter is the current

iteration number, and 𝑛 is a modulation index. With the increase in the iteration the value of weight
1

increases from weight
init

 to 1, whereas weight
2

 decrease from (1 - weight
init

) to 0. The values of
weight and weight

1 2
 determine the importance of each objective to the fitness function. Large

values of weight
1
, the solutions with large number of killed mutants are more preferred. In contrary

with large values of weight
2

, the solutions with minimum number of test cases are more preferred.
The different values of weight weight

1 2
, produce different non-dominated solutions with sufficient

diversity; so the Pareto front can be approximated correctly. Algorithm 1 shows the basic steps of
the multi-objective ABBA.

EXPERIMENTS AND RESULTS

Research Questions
The experiments were designed to answer the following research questions:

International Journal of Open Source Software and Processes
Volume 12 • Issue 2 • April-June 2021

9

RQ1: Does the performance of the ABBA surpasses the performance of the OBBA and the BPSO
in solving the test suite reduction problem?

RQ2: Is the ABBA scalable, i.e. How does the increase in the test suite size and the number of mutants
impact the performance of the ABBA?

Data Sets
We used a free available dataset (1), which was used in previous studies (Offutt, Lee, et al., 1996;
Offutt & Lee, 1994; Pargas, Harrold, & Peck, 1999; Polo, Piattini, & García‐Rodríguez, 2009; Usaola,
Mateo, & Lamancha, 2012). The dataset includes six Java programs; their characteristics are listed
in Table 1, which are the software size in terms of the Line of Code (LOC), number of first-order
mutants (mu) generated by the MuJava tool (2), and the test suite size (tc) which are automatically
generated using testooj tool (3). The programs are arranged in Table 1 according to the test suite size
from the smallest to the largest. It should be noted that the value of the (tc) is not proportional to
the value of the (mu) or the (LOC).

Performance Metrics
Three metrics were used in the performance evaluation which are: (1) the fitness function values
fitness , (2) Speed of convergence to the best solution measured in terms of the number of iterations
i and (3) the fault detection rate (FDR) of the test suite calculated using equation (15) as follows:

FDR
Number of killed mutants

Total number of mutants
=

	 (15)

The higher the value of the (fitness), the better is the discovered solution. The higher the value
of the FDR, the more capable is the test suite on discovering the faults. The lower the value of the (
i), indicates that the algorithm converges faster to the best solution.

As the evolutionary algorithms are stochastic, N independent runs were performed over each
dataset (in this paper N was set to equal 10). Then the mean and standard deviation (SD) of each
metric was calculated at the end of the runs. The mean and SD of f are calculated by Eqs. (16), (17)
respectively:

mean f N
k

N

k
=










=
∑

1

/ 	 (16)

SD
f mean

N
k

N

k
=

−
=∑ 1

2()
	 (17)

where, N is the number of runs, f
k

 is the fitness of the best solution discovered during the run number
k .

The smaller the value of the SD, the more robust is the algorithm, as small SD values indicate
that the algorithm can find acceptable solutions in the different runs, with small discrepancy.

International Journal of Open Source Software and Processes
Volume 12 • Issue 2 • April-June 2021

10

Parameter Setting
The selection of the parameter values of the evolutionary algorithms has an impact on their
performance. The authors experimented with the most recommended values for the parameters in
literature (Carvalho, da Rocha, Silva, da Fonseca Vieira, & Xavier, 2017). Table 2 lists the parameter
values that achieved the best performance. Table 3 lists the values of weight1 and weight2 which
were used to calculate 10 non-dominated solutions on the Pareto surface.

Results
The fitness mean and SD values of the non-dominated solutions found by each of the ABBA, OBBA
and BPSO, and their corresponding convergence speeds, measured in terms of the mean and SD of

Algorithm 1. Multi-objective adapted binary bat algorithm (ABBA)

Table 1. Experimental Software Under Test (SUT)

SUT LOC mu tc

MBisectOk 31 44 25

MFourBall 47 168 96

MMidOK 59 138 125

MFindOk 79 179 135

MTringle 61 239 216

MBubCorrect 54 70 256

International Journal of Open Source Software and Processes
Volume 12 • Issue 2 • April-June 2021

11

the number of iterations required to discover the best solutions are shown in Table 4. Table 5 lists the
sizes of the reduced test suites, their corresponding number of killed mutants and fault detection rates.

Answer to RQ1
It could be observed from Table 4, that the ABBA algorithm surpasses both of the BPSO and
OBBA in terms of the mean fitness values of the discovered non-dominated solutions, across the six
Java programs. Moreover, the fitness standard deviation values of the 10 non-dominated solutions
discovered by the ABBA are very small; most of them are equal to zero or approaches zero which
indicates the robustness of the ABBA. However, the BPSO could converge to solutions close to the
ones discovered by the ABBA over the small size program MBisectOK, e.g. the non-dominated
solutions (NDS) number 1, 4, 7 and 9 of the MBisectOk program.

In terms of the convergence speed, the ABBA could converge to the best solutions in less
number of iterations than the OBBA over the six Java programs except MBisectOk (NDS 2,7,8,9,
10), MbubCorrect (NDS 8, 10) and MTringle (NDS 9); where, the OBBA converged faster than
the ABBA. Nevertheless, the ABBA converged to better solutions than the ones discovered by the
OBBA. So. It could be stated that the OBBA was prematurely converged in these cases. It should be

Table 2. Parameter settings for ABBA, OBBA, and BPSO

Parameter Value

ABBA OBBA IBPSO

Population size 40 40 40

Max iteration 100 100 100

Stopping criterion Max iteration Max iteration Max iteration

F
min 0 0 -

F
max 2 2 -

A 0.9 0.9 -

r 0.1 0.1 -

ε [-1,1] - -

α 0.9 0.9 -

γ 0.9 0.9 -

w
max

, w
min 0.8, 0.4 - -

Modulation index, n 2 - -

δ
init 0.6 - -

C C
1 2
, - - 1.5, 1.2

W - - 2

Max velocity - - 6

International Journal of Open Source Software and Processes
Volume 12 • Issue 2 • April-June 2021

12

noted that the MBisectOk, MbubCorrect and MTringle are of different sizes. Furthermore, it could
be observed that the ABBA converges faster than the BPSO across the six Java programs.

In terms of the size of the reduced test suites and their fault detection capabilities, as could be
observed from Table 5 the ABBA, in comparison to the BPSO and the OBBA, was able to discover
the smallest reduced test suite across three programs of different sizes, MBisectOk, MbubCorrect and
MfindOk. Moreover, the reduced test suites discovered by the ABBA have the highest fault detection
capabilities, in terms of the number of killed mutants and FDR.

Across the MfourBall, MFindOk, MMidOK programs, the solutions found by the ABBA, in
comparison to the OBBA and the BPSO, either have the highest fault detection capabilities but at the
expense of the sizes of the discovered reduced test suites, e.g. MfourBall program; or the solutions
have the smallest reduced test suite sizes but with less fault detection capabilities. So, the selection of
the best solution across MfourBall, MFindOk, MMidOK depends on the testers’ targets and testing
budgets.

Fig. 1 shows sample convergence curves of the ABBA, OBBA and BPSO over the six programs.
As could be observed that the ABBA converge faster and to better solutions, in terms of the fitness
function values, than the OBBA and the BPSO, although the parameters settings of both of the ABBA
and the OBBA are the same.

Answer to RQ2
We experimented with six Java programs with different search space sizes. The size of the test suite
and the number of mutants are the indicators of the size of the search space. As could be observed
from table 4 that the performance of the ABBA, in terms of the mean and SD of best fitness, is
superior to the OBBA and the BPSO over the six programs of different search space sizes, which
indicates that the ABBA is scalable.

CONCLUSION AND FUTURE WORK

This paper proposed a search-based optimization methodology for reducing the cost of the regression
testing, through reducing the size of the test suite, with minimum or no loss of fault discovery
capabilities. The proposed methodology is based on formulating the TSR problem as a multi-objective
optimization problem, in terms of the test suite size and mutation score. Then, the original BBA was
modified to enhance its exploration capabilities and boost its performance. Finally, a weighted sum
strategy was utilized to guide the ABBA during the search for a Pareto front.

The effectiveness of the proposed ABBA in solving the TSR problem was evaluated using six
Java programs. The experimental results showed that the performance of the proposed ABBA is
superior to each of the OBBA and BPSO. In addition to, the ABBA converged to the best solutions
faster than each of the OBBA and the BPSO.

As a further extension for this work, we plan to redefine the fitness function by considering more
objectives such as test suite execution time and branch coverage. In addition, different weighting
mechanisms will be tried and compared to this work. Finally, Co-evolution based on the ABBA may
be considered to optimize the mutation testing while optimizing the regression testing; as the mutation
testing is known to be expensive but effective in assessing the quality of a test suite.

Table 3. Weights used during experiments to generate 10 non-dominated solutions (NDS) which represents the Pareto front

NDS 1 2 3 4 5 6 7 8 9 10

Weight1 0.6 0.676 0.744 0.804 0.856 0.9 0.936 0.964 0.984 0.9960

Weight2 0.4 0.324 0.256 0.196 0.144 0.1 0.064 0.036 0.016 0.0040

International Journal of Open Source Software and Processes
Volume 12 • Issue 2 • April-June 2021

13

Table 4. Comparison among the fitness values (fitness) and the convergence speed (i) of the 10 non-dominated solutions
(NDS) discovered by the ABBA, OBBA AND BPSO

NDS Algorithm MEAN ± STD. DEV
MBisectOk MBubCorrect MFindOk MFourBall MMidOK MTringle

1 ABBA fitness 10.57 ± 0 8.34 ± 1.46 54.60 ± 0 38.62 ± 0.02 8.34 ± 1.46 11.53 ±3.25
i 15.33 ± 8.09 91.60 ± 6.28 68.50 ± 12.25 60.20 ± 23.06 69.70 ± 19.30 94.22 ± 5.95

OBBA fitness 10.52 ± 0.06 2.72 ± 0.24 4.34 ± 0.97 4.34 ± 0.97 4.69 ± 1.08 2.99 ± 0.33
i 28.30 ± 17.72 91.50 ± 8.20 92.90 ± 8.41 88.50 ± 9.31 88.80 ± 9.19 95.00 ± 4.03

BPSO fitness 10.57 ± 0.01 2.71 ± 0.19 4.69 ± 1.04 12.59 ± 4.28 5.84 ± 1.76 2.94 ± 0.38
i 67.60 ± 22.08 98.40 ± 1.58 98.70 ± 1.06 98.60 ± 1.96 99.50 ± 0.85 99.40 ± 0.97

2 ABBA fitness 8.75 ± 0 8.01 ± 2.73 44.42 ± 0 31.36 ± 0.02 8.01 ± 2.73 8.03 ± 1.25
i 29.11 ± 29.03 93.10 ± 5.53 65.60 ± 9.82 61.00 ± 29.82 73.20 ± 18.28 95.11 ± 6.68

OBBA fitness 8.73 ± 0.03 2.36 ± 0.17 3.69 ± 0.53 9.31 ± 7.96 4.72 ± 1.29 2.66 ± 0.32
i 19.30 ± 11.88 94.80 ± 3.36 80.80 ± 15.16 77.40 ± 17.06 79.10 ± 15.06 93.80 ± 5.21

BPSO fitness 8.74 ± 0.01 2.32 ± 0.13 3.94 ± 0.43 5.70 ± 0.90 4.07 ± 0.47 2.63 ± 0.16
i 68.80 ± 24.12 99.20 ± 1.03 99.30 ± 1.06 98.40 ± 1.58 99.70 ± 0.48 99.00 ± 1.33

3 ABBA fitness 7.11 ± 0.01 5.73 ± 1.33 35.16 ± 0.31 24..84 ± 0.02 5.73 ± 1.33 7.58 ± 1.47
i 25.44 ± 22.60 90.60 ± 8.14 58.00 ± 17.00 52.20 ± 25.62 74.10 ± 14.06 91.00 ± 5.36

OBBA fitness 7.07 ± 0.06 2.13 ± 0.08 3.22 ± 0.64 4.86 ± 2.87 3.74 ± 1.36 2.21 ± 0.20
i 38.50 ± 22.87 91.00 ± 7.56 81.30 ± 10.93 81.90 ± 10.87 93.50 ± 16.85 92.70 ± 8.62

BPSO fitness 7.10 ± 0.01 2.08 ± 0.14 3.11 ± 0.35 5.62 ± 2.61 3.58 ± 0.47 2.11 ± 0.12
i 70.80 ± 26.33 99.60 ± 0.84 99.60 ± 0.70 98.50 ± 1.90 99.50 ± 2.21 99.30 ± 0.82

4 ABBA fitness 5.67 ± 0 4.87 ± 0.77 27.26 ± 0 19.10 ± 0.02 4.87 ± 0.77 5.58 ± 1.60
i 20.56 ± 18.92 90.90 ± 7.46 59.50 ± 12.26 68.30 ± 24.10 76.70 ±17..78 93.11 ± 5.01

OBBA fitness 5.65 ± 0.03 1.86 ± 0.10 2.54 ± 0.37 5.49 ± 5.02 3.18 ± 1.25 1.80 ± 0.08
i 30.60 ± 21.48 93.50 ± 3.75 88.70 ± 12.20 79.90 ± 12.35 79.60 ± 6.36 91.90 ± 8.10

BPSO fitness 5.67 ± 0 1.82 ± 0.11 2.82 ± 0.30 4.46 ± 1.03 3.08 ± 0.56 1.84 ± 0.10
i 78.50 ± 10.76 98.80 ± 1.48 98.70 ± 1.64 98.90 ± 1.10 99.30 ± 0.85 99.70 ± 0.70

5 ABBA fitness 4.42 ± 0 3.70 ± 0.61 20.13 ± 0.35 14.14 ± 0.02 3.70 ± 0.61 3.82 ± 0.72
i 20.44 ± 9.88 92.70 ± 7.63 69.20 ± 11.13 55.70 ± 23.31 67.40 ± 21.57 93.78 ± 5.80

OBBA fitness 4.31 ± 0.13 1.61 ± 0.06 2.13 ± 0.24 3.84 ± 3.64 2.34 ± 0.25 1.58 ± 0.07
i 31.90 ± 22.20 92.90 ± 7.65 91.50 ± 6.11 79.80 ± 12.67 89.30 ± 7.15 92.50 ± 9.92

BPSO fitness 4.41 ± 0.01 1.61 ± 0.07 2.45 ± 0.33 3.25 ± 0.64 2.48 ± 0.23 1.58 ± 0.09
i 81.80 ± 9.11 99.80 ± 0.42 99.00 ± 0.94 99.00 ± 1.56 99.50 ± 1.08 99.10 ± 0.74

6 ABBA fitness 3.36 ± 0.01 2.95 ± 0.84 14.40 ± 0 9.93 ± 0.03 2.95 ± 0.48 3.18 ± 0.92
i 19.89 ± 15.83 91.70 ± 6.06 68.20 ± 10.46 57.80 ± 23.71 75.20 ± 20.57 94.56 ± 4.33

OBBA fitness 3.29 ± 0.09 1.49 ± 0.06 1.80 ± 0.26 2.14 ± 0.25 1.92 ± 0.20 1.40 ± 0.04
i 26.10 ± 22.48 92.50 ± 7.92 89.30 ± 13.48 81.70 ± 14.68 87.00 ± 13.50 96.20 ±4.54

BPSO fitness 3.35 ± 0.02 1.40 ± 0.03 2.03 ± 0.22 3.44 ± 2.37 2.03 ± 0.23 1.37 ± 0.03
i 64.00 ± 18.01 98.60 ± 2.01 99.00 ± 1.25 99.60 ± 0.97 99.60 ± 0.97 99.80 ± 0.42

7 ABBA fitness 2.49 ± 0.01 2.36 ± 0.36 8.96 ± 1.36 6.48 ± 0.03 2.36 ± 0.36 2.07 ± 0.29
i 26.33 ± 21.42 90.60 ± 5.48 54.80 ± 10.38 67.20 ± 19.72 69.90 ± 16.3 91.56 ± 5.08

OBBA fitness 2.46 ± 0.04 1.29 ± 0.04 1.55 ± 0.11 1.72 ± 0.21 1.56 ± 0.10 1.24 ± 0.02
i 18.40 ± 16.81 94.10 ± 4.01 91.90 ± 8.33 71.40 ± 19.13 85.00 ± 15.63 93.30 ± 5.60

BPSO fitness 2.49 ± 0.01 1.27 ± 0.01 1.58 ± 0.10 2.41 ± 1.45 1.64 ± 0.17 1.22 ± 0.02
i 74.10 ± 6.97 99.50 ± 0.85 99.30 ± 1.06 98.20 ± 1.23 99.50 ± 0.53 99.50 ± 0.71

8 ABBA fitness 1.82 ± 0 1.70 ± 0.10 5.73 ± 0.30 3.80 ± 0.03 1.70 ± 0.10 1.45 ± 0.08
i 29.67 ± 20.35 93.90 ± 4.53 69.30 ± 17.21 73.70 ± 16.79 76.80 ± 12.39 93.56 ± 6.88

OBBA fitness 1.76 ± 0.06 1.16 ± 0.02 1.30 ± 0.05 1.41 ± 0.09 1.33 ± 0.10 1.13 ± 0.01
i 21.00 ± 13.44 92.70 ± 7.62 89.90 ± 14.70 79.10 ± 14.55 89.80 ± 9.73 94.40 ± 4.65

BPSO fitness 1.80 ± 0.04 1.15 ± 0.01 1.35 ± 0.12 1.54 ± 0.13 1.35 ± 0.09 1.13 ± 0.01
i 76.50 ± 25.25 99.10 ± 1.37 98.20 ± 1.93 98.50 ± 1.27 99.20 ± 0.92 98.90 ± 1.20

9 ABBA fitness 1.33 ± 0.01 1.31 ± 0.09 3.05 ± 0.31 1.36 ± 0 1.31 ± 0.09 1.19 ± 0.03
i 22.22 ± 26.71 90.00 ± 9.83 68.50 ± 20.70 56.90 ± 23.41 79.30 ± 15.41 91.44 ± 6.06

OBBA fitness 1.30 ± 0.04 1.07 ± 0.01 1.13 ± 0.03 1.17 ± 0.04 1.13 ± 0.03 1.06 ± 0.01
i 21.90 ± 14.04 93.90 ± 6.98 89.90 ± 7.48 74.90 ± 16.13 85.90 ± 14.83 87.20 ±10.26

BPSO fitness 1.33 ± 0.01 1.06 ± 0.01 1.14 ± 0.03 1.21 ± 0.07 1.14 ± 0.02 1.05 ± 0
i 75.60 ± 20.22 95.90 ± 11.23 98.50 ± 1.27 99.00 ± 1.25 99.60 ± 0.52 99.60 ± 0.52

10 ABBA fitness 1.05 ± 0 1.08 ± 0.02 1.54 ± 0 1.08 ± 0.01 1.08 ± 0.02 1.04 ± 0
i 42.22 ± 30.97 92.50 ± 6.08 64.30 ± 13.65 54.30 ± 21.68 76.50 ± 14.16 88.56 ± 11.28

OBBA fitness 1.04 ± 0.01 1.02 ± 0 1.03 ± 0.01 1.04 ± 0.01 1.03 ± 0.01 1.01 ± 0
i 21.90 ± 18.78 89.40 ± 8.37 90.50 ±6.52 83.40 ± 12.03 90.30±9.32 91.60 ± 7.88

BPSO fitness 1.05 ± 0.01 1.02 ± 0 1.03 ± 0.01 1.05 ± 0.01 1.03 ± 0.01 1.01 ± 0
i 71.90 ± 16.63 99.40 ± 0.84 98.40 ±2.22 99.50 ± 0.71 99.40±0.70 99.20 ± 0.92

International Journal of Open Source Software and Processes
Volume 12 • Issue 2 • April-June 2021

14

Table 5. Comparison among the 10 non-dominated solutions discovered by the ABBA, OBBA and BPSO in terms of the fault
detection rate (FDR), number of killed mutants (KM) and size of reduced test suite (RTS)

NDS Algorithm MEAN ± STD. DEV

MBisectOk MBubCorrect MFindOk MFourBall MMidOK MTringle

1 ABBA FDR 95.45 ± 0 96.3 ± 0.32 99.4 ± 0 37.4 ± 4.02 41.6± 11.06 73.7± 30.08

KM 42 ± 0 67.9 ± 0.32 178 ± 0 63.2 ± 4.02 57.40 ±
11.06

161.60 ± 30.08

RTS 1 ± 0 13.88 ± 2.70 1 ± 0 1 ± 0 1.1 ± 0.31 8.4 ± 2.32

OBBA FDR 86.4± 4.09 97.1 ± 0 99.4 ± 0 83.4± 20.99 94.7± 8.62 87.7±16.29

KM 38 ± 4.09 68 ± 0 178 ± 0 140.1 ± 20.99 130.7 ± 8.62 209 ± 16.29

RTS 1 ± 0 48.6 ± 5.19 15.3 ± 3.80 7.9 ± 2.42 12.6 ± 2.41 35.5 ± 3.66

BPSO FDR 95.0 ± 0.6 97.1 ± 0 99.4 ± 0 61.7± 15.33 94.4 ± 6.7 87.9± 8.31

KM 41.8 ± 0.6 68 ± 0 178 ± 0 103.6 ± 15.33 130.3 ± 6.7 210.1 ± 8.31

RTS 1 ± 0 50.6 ± 4.14 13.6 ±1.78 6.3 ± 1.49 11.9 ± 1.52 34.4 ± 3.02

2 ABBA FDR 95.45 ± 0 97.0 ± 0 99.4±74.21 37.6± 3.85 41.2± 3.65 67.7± 23.96

KM 42 ± 0 68 ± 0 142.80 ± 74.21 58.8 ± 3.85 56.80 ± 3.65 164.20 ± 23.96

RTS 1 ± 0 13.75 ± 2.66 1 ± 0 1 ± 0 1.1 ± 0.32 9.5 ± 1.72

OBBA FDR 92.5 ± 1.55 97.1 ± 0 99.4 ± 0 75.4± 30.37 91.7± 11.55 91.6 ± 9.33

KM 40.7 ± 1.55 68 ± 0 178 ± 0 126.6 ± 30.37 126.5 ±
11.55

219 ± 9.33

RTS 1 ± 0 49.5 ± 4.85 14.9 ± 2.47 4.9 ± 1.97 10.6 ± 2.84 35 ± 4.30

BPSO FDR 95.0 ± 0.6 97.1 ± 0.32 99.4 ± 0 82.6± 25.13 95.1± 11.12 86.2± 13.72

KM 41.8 ± 0.6 67.9 ± 0.32 178 ± 0 138.7 ± 25.13 131.2 ±
11.12

206 ± 13.72

RTS 1 ± 0 50.6 ± 4.14 13.6 ±1.78 6.3 ± 1.49 11.9 ± 1.52 34.4 ± 3.02

3 ABBA FDR 95.0 ± 0.63 97.1 ± 2.83 79.8 ± 0 35.0 ± 4.98 46.9± 26.62 78.7±32.72

KM 41.8 ± 0.63 67 ± 2.83 178 ± 0 58.9 ± 4.98 64.70 ±
26.62

173.30 ± 32.72

RTS 1 ± 0 14.63 ± 2.56 1 ± 0 1 ± 0 1 ± 0 8.2 ± 1.99

OBBA FDR 89.5 ± 3.23 97.1 ± 0 99.4 ± 0 71.2± 34.58 97.0 ± 4.92 94.1 ± 7.94

KM 39.4 ± 3.23 68 ± 0 178 ± 0 119.6 ± 34.58 133.8 ± 4.92 255 ± 7.94

RTS 1 ± 0 47.3 ± 2.75 14.8 ± 3.79 7.1 ± 2.56 12.2 ± 4.61 37.3 ± 5.56

BPSO FDR 94.5 ± 0.8 97.1 ± 0 99.4 ± 0 83.2± 30.12 94.9± 9.27 92.8± 9.69

KM 41.6 ± 0.8 68 ± 0 178 ± 0 139.7 ± 30.12 130.3 ± 9.27 221.7 ± 9.69

RTS 1 ± 0 49.5± 5.33 14.9 ± 2.08 5.7 ± 1.77 11.3 ± 1.95 39.3 ± 3.53

4 ABBA FDR 95.45 ± 0 95.7 ± 0.42 99.4± 73.58 35.1 ± 4.06 40.1± 8.42 72.5± 29.21

KM 42 ± 0 67.8 ± 0.42 143.10 ± 73.58 62.3 ± 4.06 55.40 ± 8.42 179.30 ± 29.21

RTS 1 ± 0 12.88 ± 2.80 1 ± 0 1 ± 0 1.3 ± 0.68 9.20 ± 2.62

OBBA FDR 93.0 ± 1.58 97.1 ± 0 99.4 ± 0 76.7± 42.40 91.8± 14.41 95.9± 2.57

KM 40.9 ± 1.58 68 ± 0 178 ± 0 128.9 ± 42.40 126.7 ±
14.41

229.3 ± 2.57

RTS 1 ± 0 47.7 ± 5.16 15.8 ± 2.78 6.4 ± 3.34 11.4 ± 3.20 41.2 ± 3.08

BPSO FDR 95.5 ± 0 97.1 ± 0 99.4 ± 0 82.0 ± 30.60 94.9± 4.33 95.7 ± 4.89

KM 42 ± 0 68 ± 0 178 ± 0 137.8 ± 30.60 130.9 ± 4.33 228.8 ± 4.89

RTS 1 ± 0 49.8 ± 5.33 13.4 ± 2.12 5.3 ± 1.34 11 ± 2.45 40.1 ± 4.36

5 ABBA FDR 95.45 ± 0 96.9 ± 0.42 79.9±73.58 37.1 ± 4.06 41.2± 5.47 75.0± 29.21

KM 42 ± 0 67.8 ± 0.42 143.10 ± 73.58 62.3 ± 4.06 56.90 ± 5.47 179.30 ± 29.21

RTS 1 ± 0 13.86 ± 2.34 1 ± 0 1 ± 0 1 ± 0 10.30 ± 2.31

OBBA FDR 83.2 ± 6.35 97.1 ± 0 99.4 ± 0 97.6± 40.20 95.8± 0.32 97.7± 1.26

KM 36.6 ± 6.35 68 ± 0 178 ± 0 142.6 ± 40.20 132.2 ± 0.32 233.6 ± 1.26

RTS 1 ± 0 48.7 ± 3.68 15.7 ± 2.90 7.2 ± 3.05 12.1 ± 2.33 42.1 ± 3.81

BPSO FDR 95.0 ± 0.6 97.1 ± 0 99.4 ± 0 85.7± 25.01 94.7± 8.88 96.7± 2.35

KM 41.8 ± 0.6 68 ± 0 178 ± 0 144 ± 25.01 130.7 ± 8.88 231.2 ± 2.35

RTS 1 ± 0 49 ± 4.27 12.7 ± 2.71 6 ± 1.94 10.9 ± 1.59 41.8 ± 4.89

continued on following page

International Journal of Open Source Software and Processes
Volume 12 • Issue 2 • April-June 2021

15

NDS Algorithm MEAN ± STD. DEV

MBisectOk MBubCorrect MFindOk MFourBall MMidOK MTringle

6 ABBA FDR 41.8 ± 0.63 96.4 ± 0.71 99.4 ± 0 36.5 ± 5.33 41.5 ± 2.38 78.6± 27.23

KM 41.8 ± 0.63 67.5 ± 0.71 178 ± 0 61.3 ± 5.33 57.30 ± 2.38 187.90 ± 27.23

RTS 1 ± 0 12.75 ± 1.98 1 ± 0 1 ± 0 1 ± 0 9.80 ± 3.05

OBBA FDR 87.5 ± 4 97.1 ± 0 99.4 ± 0 93.9± 17.21 97.7 ± 2.53 98.5± 1.64

KM 38.5 ± 4 68 ± 0 178 ± 0 157.7 ± 17.21 134.8 ± 2.53 235.3 ± 1.64

RTS 1 ± 0 43.6 ± 4.85 16 ± 3.80 7.8 ± 1.69 12.3 ± 2.00 42.3 ± 3.27

BPSO FDR 94.1 ± 0.92 97.1 ± 0 99.4 ± 0 78.8± 41.94 93.6± 9.90 97.9± 3.49

KM 41.4 ± 0.92 68 ± 0 178 ± 0 132.3 ± 41.94 129.1 ± 9.90 234 ± 3.49

RTS 1 ± 0 51.5 ± 3.47 12.4 ± 2.41 5.5 ± 3.24 10.9 ± 2.29 44.6 ± 3.27

7 ABBA FDR 95.0 ± 0.63 96.9± 0.42 97.9 ± 73.58 35.9 ± 5.10 41.8± 15.72 86.4±19.42

KM 41.8 ± 0.63 67.8 ± 0.42 143 ± 73.58 60.3 ± 5.10 57.70 ±
15.72

206.60±19.42

RTS 1 ± 0 11.63 ± 2.67 1.1 ± 0.32 1 ± 0 1.1 ± 0.32 11.7 ± 3.06

OBBA FDR 91.8 ± 1.9 97.1 ± 0 99.4 ± 0 95.9± 12.49 97.7 ± 2.71 99.8± 0.70

KM 40.4 ± 1.9 68 ± 0 178 ± 0 161.1 ± 12.49 134.7 ± 2.71 238.5 ± 0.70

RTS 1 ± 0 46.9 ± 5.15 14.5 ± 2.99 8 ± 2 12.5 ± 2.12 46 ± 3.27

BPSO FDR 95.0 ± 0.60 97.1 ± 0 99.4 ± 0 87.4 ± 33.79 98.1± 3.30 99.4± 1.84

KM 41.8 ± 0.60 68 ± 0 178 ± 0 146.9 ± 33.79 135.4 ± 3.30 237.6 ± 1.84

RTS 1 ± 0 48.7 ± 1.34 13.7 ± 2 5.7 ± 2.58 11.7 ± 2.98 48.3 ± 4.45

8 ABBA FDR 95.0 ± 0 97.1 ± 0 89.7±55.34 35.8 ± 5.15 42.0± 6.01 95.0 ±7.41

KM 42 ± 0 68 ± 0 160.50 ± 55.34 60.1 ± 5.15 57.90 ± 6.01 227 ±7.41

RTS 1 ± 0 12.25 ± 1.58 1 ± 0 1 ± 0 1 ± 0 15.9 ± 2.58

OBBA FDR 88.9 ± 2.62 97.1 ± 0 99.4 ± 0 98.5± 1.64 98.4 ± 3.08 100± 0.32

KM 39.1 ± 2.62 68 ± 0 178 ± 0 165.4 ± 1.64 135.8 ± 3.08 238.9 ± 0.32

RTS 1 ± 0 46.3 ± 4.97 14.9 ± 2.23 7.8 ± 1.87 12.6 ± 3.13 47.9 ± 3.81

BPSO FDR 93.9 ± 0.6 97.1 ± 0 99.4 ± 0 98.2± 33.79 95.7± 3.30 99.9 ± 1.84

KM 41.8 ± 0.6 68 ± 0 178 ± 0 146.9 ± 33.79 135.4 ± 3.30 237.6 ± 1.84

RTS 1 ± 0 48.7 ± 1.34 13.7 ± 2 5.7 ± 2.58 11.7 ± 2.98 48.3 ± 4.45

9 ABBA FDR 95.45 ± 0.63 96.6 ± 0 89.7±55.34 99.3 ± 0.42 41.4± 13.13 98.4 ±2.88

KM 41.8 ± 0.63 67.6 ± 0 160.50 ± 55.34 166.8 ± 0.42 57.20 ±
13.13

235.1 ±2.88

RTS 1 ± 0 13.50 ± 4.14 1 ± 0 4 ± 0 1.1 ± 0.32 15 ± 2.77

OBBA FDR 91.4 ± 1.83 97.1 ± 0 99.4 ± 0 99.4 ± 0.94 99.9± 0.42 100 ± 0.0

KM 40.2 ± 1.83 68 ± 0 178 ± 0 167 ± 0.94 137.8 ± 0.42 239 ± 0.0

RTS 1 ± 0 47.7 ± 3.19 15 ± 2.83 8.3 ± 1.64 14 ± 2.70 49 ± 4.94

BPSO FDR 95.0 ± 1.55 97.1 ± 0 99.4 ± 0 99.2± 4.03 99.1 ± 10.39 100± 0.68

KM 41.3 ± 1.55 68 ± 0 178 ± 0 165 ± 4.03 132.1 ±
10.39

238.7 ± 0.68

RTS 1 ± 0 48.7 ± 2.87 13.5 ± 4.03 6.1 ± 1.59 11.4 ± 3.34 47.5 ± 4.03

10 ABBA FDR 95.0 ± 1.05 97.1 ± 0 99.4 ± 0 99.3 ± 0.42 99.1 ± 1.06 100 ± 0

KM 43 ± 1.05 68 ± 0 178 ± 0 166.8 ± 0.42 136.70 ±
1.06

239 ± 0

RTS 1.1 ± 0.3 13 ± 3.38 1 ± 0 4.2 ± 0.42 5 ± 0.67 20.6 ± 1.51

OBBA FDR 99.5 ± 0.6 97.1 ± 0 99.4 ± 0 99.9 ± 0.6 100.0± 0 100± 0.0

KM 43.8 ± 0.6 68 ± 0 178 ± 0 167.8 ± 0.6 138 ± 0 239 ± 0.0

RTS 2.6 ± 0.8 47.4±4.43 16.4 ± 3.17 9.1 ± 1.52 13.7 ± 3.09 46 ± 4.16

BPSO FDR 97.3 ± 0.68 97.1 ± 0 99.4 ± 0 99.8± 0.97 99.9± 0.32 100 ± 0

KM 42.8 ± 0.98 68 ± 0 178 ± 0 167.6 ± 0.97 137.9 ± 0.32 239 ± 0

RTS 1.6 ± 0.8 49.2 ± 4.87 14.4 ± 2.06 7.8 ± 1.93 13.2 ± 2.15 53.9 ± 4.25

Table 5.. Continued

International Journal of Open Source Software and Processes
Volume 12 • Issue 2 • April-June 2021

16

Figure 2. Sample convergence curves of the ABBA, OBBA and BPSO over the dataset

International Journal of Open Source Software and Processes
Volume 12 • Issue 2 • April-June 2021

17

REFERENCES

Agrawal, A. P., Choudhary, A., Kaur, A., & Pandey, H. M. (2019). Fault coverage-based test suite optimization
method for regression testing: Learning from mistakes-based approach. Neural Computing & Applications,
1–16. doi:10.1007/s00521-019-04098-9

Andrews, J. H., Briand, L. C., Labiche, Y., & Namin, A. S. (2006). Using mutation analysis for assessing and
comparing testing coverage criteria. IEEE Transactions on Software Engineering, 32(8), 608–624. doi:10.1109/
TSE.2006.83

Assi, R. A., Masri, W., & Trad, C. (2018). Substate Profiling for Effective Test Suite Reduction. Paper presented
at the 2018 IEEE 29th International Symposium on Software Reliability Engineering (ISSRE). doi:10.1109/
ISSRE.2018.00023

Bansal, J. C., Singh, P., Saraswat, M., Verma, A., Jadon, S. S., & Abraham, A. (2011). Inertia weight strategies
in particle swarm optimization. Paper presented at the 2011 Third world congress on nature and biologically
inspired computing. doi:10.1109/NaBIC.2011.6089659

Bhatia, P. K. (2020). Test Case Minimization in COTS Methodology Using Genetic Algorithm: A Modified
Approach. Proceedings of ICETIT, 2019, 219–228.

Carvalho, I. A., da Rocha, D. G., Silva, J. G. R., da Fonseca Vieira, V., & Xavier, C. R. (2017). Study of parameter
sensitivity on bat algorithm. Paper presented at the International Conference on Computational Science and Its
Applications. doi:10.1007/978-3-319-62392-4_36

Catal, C., & Mishra, D. (2013). Test case prioritization: A systematic mapping study. Software Quality Journal,
21(3), 445–478. doi:10.1007/s11219-012-9181-z

Chawla, M., & Duhan, M. (2015). Bat algorithm: A survey of the state-of-the-art. Applied Artificial Intelligence,
29(6), 617–634. doi:10.1080/08839514.2015.1038434

Chen, T. Y., & Lau, M. F. (1998). A simulation study on some heuristics for test suite reduction. Information
and Software Technology, 40(13), 777–787. doi:10.1016/S0950-5849(98)00094-9

Coviello, C., Romano, S., Scanniello, G., Marchetto, A., Antoniol, G., & Corazza, A. (2018). Clustering support
for inadequate test suite reduction. Paper presented at the 2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER). doi:10.1109/SANER.2018.8330200

Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. Proceedings of the Sixth
International Symposium on Micro Machine and Human Science. doi:10.1109/MHS.1995.494215

Frankl, P. G., Weiss, S. N., & Hu, C. (1997). All-uses vs mutation testing: An experimental comparison of
effectiveness. Journal of Systems and Software, 38(3), 235–253. doi:10.1016/S0164-1212(96)00154-9

Gary, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-completeness.
WH Freeman and Company.

Geng, J., Li, Z., Zhao, R., & Guo, J. (2016). Search based test suite minimization for fault detection and
localization: A co-driven method. Paper presented at the International Symposium on Search Based Software
Engineering. doi:10.1007/978-3-319-47106-8_3

Gotlieb, A., & Marijan, D. (2014). FLOWER: optimal test suite reduction as a network maximum flow. Proceedings
of the 2014 International Symposium on Software Testing and Analysis. doi:10.1145/2610384.2610416

Gupta, N., Sharma, A., & Pachariya, M. K. (2020). Multi-objective test suite optimization for detection and
localization of software faults. Academic Press.

Hamdy, A. (2014). Genetic fuzzy system for enhancing software estimation models. International Journal of
Modeling Optimization, 4(3), 227–232. doi:10.7763/IJMO.2014.V4.378

Hamdy, A., & El-Laithy, A. (2020). Semantic categorization of software bug repositories for severity assignment
automation. In Integrating Research and Practice in Software Engineering (pp. 15–30). Springer. doi:10.1007/978-
3-030-26574-8_2

http://dx.doi.org/10.1007/s00521-019-04098-9
http://dx.doi.org/10.1109/TSE.2006.83
http://dx.doi.org/10.1109/TSE.2006.83
http://dx.doi.org/10.1109/ISSRE.2018.00023
http://dx.doi.org/10.1109/ISSRE.2018.00023
http://dx.doi.org/10.1109/NaBIC.2011.6089659
http://dx.doi.org/10.1007/978-3-319-62392-4_36
http://dx.doi.org/10.1007/s11219-012-9181-z
http://dx.doi.org/10.1080/08839514.2015.1038434
http://dx.doi.org/10.1016/S0950-5849(98)00094-9
http://dx.doi.org/10.1109/SANER.2018.8330200
http://dx.doi.org/10.1109/MHS.1995.494215
http://dx.doi.org/10.1016/S0164-1212(96)00154-9
http://dx.doi.org/10.1007/978-3-319-47106-8_3
http://dx.doi.org/10.1145/2610384.2610416
http://dx.doi.org/10.7763/IJMO.2014.V4.378
http://dx.doi.org/10.1007/978-3-030-26574-8_2
http://dx.doi.org/10.1007/978-3-030-26574-8_2

International Journal of Open Source Software and Processes
Volume 12 • Issue 2 • April-June 2021

18

Hamdy, A., & Ellaithy, A. (2020). Multi-Feature approach for Bug severity assignment. International Journal
of Open Source Software and Processes, 11(2), 1–15. doi:10.4018/IJOSSP.2020040101

Hamdy, A., & Ezzat, G. (2020). Deep mining of open source software bug repositories. International Journal
of Computers and Applications, 1–9. doi:10.1080/1206212X.2020.1855705

Hamdy, A., & Mohamed, A. (2019). Greedy binary particle swarm optimization for multi-objective constrained
next release problem. International Journal of Machine Learning and Computing, 9(5), 561–568. doi:10.18178/
ijmlc.2019.9.5.840

Jayabarathi, T., Raghunathan, T., & Gandomi, A. (2018). The bat algorithm, variants and some practical
engineering applications: a review. In Nature-Inspired Algorithms and Applied Optimization (pp. 313–330).
Springer. doi:10.1007/978-3-319-67669-2_14

Jia, Y., & Harman, M. (2010). An analysis and survey of the development of mutation testing. IEEE Transactions
on Software Engineering, 37(5), 649–678. doi:10.1109/TSE.2010.62

Kennedy, J., & Eberhart, R. C. (1997). A discrete binary version of the particle swarm algorithm. Paper presented
at the 1997 IEEE International conference on systems, man, and cybernetics. Computational cybernetics and
simulation. doi:10.1109/ICSMC.1997.637339

Khan, S. U. R., Lee, S. P., Javaid, N., & Abdul, W. (2018). A systematic review on test suite reduction: Approaches,
experiment’s quality evaluation, and guidelines. IEEE Access: Practical Innovations, Open Solutions, 6,
11816–11841. doi:10.1109/ACCESS.2018.2809600

Leung, H. K., & White, L. (1989). Insights into regression testing (software testing). Proceedings. Conference
on Software Maintenance.

Lin, C.-T., Tang, K.-W., Wang, J.-S., & Kapfhammer, G. M. (2017). Empirically evaluating Greedy-based test
suite reduction methods at different levels of test suite complexity. Science of Computer Programming, 150,
1–25. doi:10.1016/j.scico.2017.05.004

Mirjalili, S., Mirjalili, S. M., & Yang, X.-S. (2014). Binary bat algorithm. Neural Computing & Applications,
25(3-4), 663–681. doi:10.1007/s00521-013-1525-5

Mohanty, S., Mohapatra, S. K., & Meko, S. F. (2020). Ant Colony Optimization (ACO-Min) Algorithm for Test
Suite Minimization. In Progress in Computing, Analytics and Networking (pp. 55-63). Springer.

Mohapatra, S. K., Mishra, A. K., & Prasad, S. (2020). Intelligent Local Search for Test Case Minimization.
Journal of The Institution of Engineers: Series B, 1-11.

Nadeem, A., & Awais, A. (2006). TestFilter: a statement-coverage based test case reduction technique. Paper
presented at the 2006 IEEE International Multitopic Conference.

Ngatchou, P., Zarei, A., & El-Sharkawi, A. (2005). Pareto multi objective optimization. Proceedings of the 13th
International Conference on, Intelligent Systems Application to Power Systems. doi:10.1109/ISAP.2005.1599245

Offutt, A. J., Lee, A., Rothermel, G., Untch, R. H., & Zapf, C. (1996). An experimental determination of sufficient
mutant operators. ACM Transactions on Software Engineering, 5(2), 99-118.

Offutt, A. J., & Lee, S. D. (1994). An empirical evaluation of weak mutation. IEEE Transactions on Software
Engineering, 20(5), 337–344. doi:10.1109/32.286422

Offutt, A. J., Pan, J., Tewary, K., & Zhang, T. (1996). An experimental evaluation of data flow and mutation testing.
Software, Practice & Experience, 26(2), 165–176. doi:10.1002/(SICI)1097-024X(199602)26:2<165::AID-
SPE5>3.0.CO;2-K

Pargas, R. P., Harrold, M. J., & Peck, R. R. (1999). Test‐data generation using genetic algorithms. Software
Testing, Verification & Reliability, 9(4), 263–282. doi:10.1002/(SICI)1099-1689(199912)9:4<263::AID-
STVR190>3.0.CO;2-Y

Polo, M., Piattini, M., & García‐Rodríguez, I. (2009). Decreasing the cost of mutation testing with second‐order
mutants. Software Testing, Verification & Reliability, 19(2), 111–131. doi:10.1002/stvr.392

http://dx.doi.org/10.4018/IJOSSP.2020040101
http://dx.doi.org/10.1080/1206212X.2020.1855705
http://dx.doi.org/10.18178/ijmlc.2019.9.5.840
http://dx.doi.org/10.18178/ijmlc.2019.9.5.840
http://dx.doi.org/10.1007/978-3-319-67669-2_14
http://dx.doi.org/10.1109/TSE.2010.62
http://dx.doi.org/10.1109/ICSMC.1997.637339
http://dx.doi.org/10.1109/ACCESS.2018.2809600
http://dx.doi.org/10.1016/j.scico.2017.05.004
http://dx.doi.org/10.1007/s00521-013-1525-5
http://dx.doi.org/10.1109/ISAP.2005.1599245
http://dx.doi.org/10.1109/32.286422
http://dx.doi.org/10.1002/(SICI)1097-024X(199602)26:2<165::AID-SPE5>3.0.CO;2-K
http://dx.doi.org/10.1002/(SICI)1097-024X(199602)26:2<165::AID-SPE5>3.0.CO;2-K
http://dx.doi.org/10.1002/(SICI)1099-1689(199912)9:4<263::AID-STVR190>3.0.CO;2-Y
http://dx.doi.org/10.1002/(SICI)1099-1689(199912)9:4<263::AID-STVR190>3.0.CO;2-Y
http://dx.doi.org/10.1002/stvr.392

International Journal of Open Source Software and Processes
Volume 12 • Issue 2 • April-June 2021

19

Rosero, R. H., Gómez, O. S., & Rodríguez, G. (2016). 15 years of software regression testing techniques—A
survey. International Journal of Software Engineering and Knowledge Engineering, 26(05), 675–689.
doi:10.1142/S0218194016300013

Sun, J.-z., & Wang, S.-y. (2010). A novel chaos discrete particle swarm optimization algorithm for test suite
reduction. Paper presented at the 2nd International Conference on Information Science and Engineering.

Usaola, M. P., Mateo, P. R., & Lamancha, B. P. (2012). Reduction of test suites using mutation. Paper presented
at the International Conference on Fundamental Approaches to Software Engineering. doi:10.1007/978-3-642-
28872-2_29

Walsh, P. J. (1985). A measure of test case completeness (software, engineering). Academic Press.

Wang, S., Ali, S., & Gotlieb, A. (2015). Cost-effective test suite minimization in product lines using search
techniques. Journal of Systems and Software, 103, 370–391. doi:10.1016/j.jss.2014.08.024

Wei, Z., Xiaoxue, W., Xibing, Y., Shichao, C., Wenxin, L., & Jun, L. (2017). Test suite minimization with mutation
testing-based many-objective evolutionary optimization. Paper presented at the 2017 International Conference
on Software Analysis, Testing and Evolution (SATE). doi:10.1109/SATE.2017.12

Xin, J., Chen, G., & Hai, Y. (2009). A particle swarm optimizer with multi-stage linearly-decreasing inertia
weight. Paper presented at the 2009 International Joint Conference on Computational Sciences and Optimization.
doi:10.1109/CSO.2009.420

Xue, Y., & Li, Y.-F. (2020). Multi-objective Integer Programming Approaches for Solving the Multi-criteria
Test-suite Minimization Problem: Towards Sound and Complete Solutions of a Particular Search-based
Software-engineering Problem. ACM Transactions on Software Engineering and Methodology, 29(3), 1–50.
doi:10.1145/3392031

Yang, X.-S. (2010). A new metaheuristic bat-inspired algorithm. In Nature inspired cooperative strategies for
optimization (NICSO 2010) (pp. 65-74). Springer. doi:10.1007/978-3-642-12538-6_6

Yang, X.-S. (2011). Bat algorithm for multi-objective optimisation. International Journal of Bio-inspired
Computation, 3(5), 267–274. doi:10.1504/IJBIC.2011.042259

Yoo, S., & Harman, M. (2007). Pareto efficient multi-objective test case selection. Proceedings of the 2007
international symposium on Software testing and analysis. doi:10.1145/1273463.1273483

ENDNOTES

1 	 http://www.inf-cr.uclm.es/www/mpolo/stvr/
2 	 https://ise.gmu.edu/~ofut/mujava/
3 	 http://alarcos.inf-cr.uclm.es/testooj3

http://dx.doi.org/10.1142/S0218194016300013
http://dx.doi.org/10.1007/978-3-642-28872-2_29
http://dx.doi.org/10.1007/978-3-642-28872-2_29
http://dx.doi.org/10.1016/j.jss.2014.08.024
http://dx.doi.org/10.1109/SATE.2017.12
http://dx.doi.org/10.1109/CSO.2009.420
http://dx.doi.org/10.1145/3392031
http://dx.doi.org/10.1007/978-3-642-12538-6_6
http://dx.doi.org/10.1504/IJBIC.2011.042259
http://dx.doi.org/10.1145/1273463.1273483
http://www.inf-cr.uclm.es/www/mpolo/stvr/
https://ise.gmu.edu/~ofut/mujava/
http://alarcos.inf-cr.uclm.es/testooj3

International Journal of Open Source Software and Processes
Volume 12 • Issue 2 • April-June 2021

20

Nagwa R. Fisal was born in Ismailia, Egypt in 1994. She received the B.S. degree in Computer Science from
Suez Canal University, Ismailia, Egypt in 2015. Since 2016 she is with the Department of Mathematics, Faculty
of Science, Suez Canal University. Her research interests are Software Testing and Computational Intelligent.

Abeer Hamdy is an associate professor at the Faculty of Informatics and Computer Science, British University in
Egypt (BUE) since April 2013; during (2009-2013) was a lecturer. Prior to joining BUE, she served as a Teaching
Assistant (1992-1996) at the 10th of Ramadan higher technological institute in Egypt, an Assistant Researcher
(1996-2003), Research Scientist (2003-2009) at the Electronics research institute in Egypt. She received her B.Sc.
degree with honors, M.Sc. and Ph.D. degrees in Electronics and Electrical communications from the Faculty of
Engineering, Cairo University in 1992, 1998,2003 respectively. She was awarded two fellowships to conduct post
doctoral research at University of Connecticut (2005-2006) and University of Central Florida (2007-2008) at the
United States. Her research interests includes search based software engineering, software design and software
maintenance.

Essam Rashed received his Ph.D. (Eng.) in Computer Science from the University of Tsukuba, Tsukuba, Japan in
2010. From 2010 to 2012, he was a Research Fellow of the Japan Society for the Promotion of Science (JSPS)
at the University of Tsukuba. He served as Assistant/Associate Professor of Computer Science at the Department
of Mathematics, Faculty of Science, Suez Canal University from 2012. Currently, he is a Research Associate
Professor at Nagoya Institute of Technology. His research interests include medical image processing, data analysis
and visualization, artificial intelligence and pattern recognition. Dr. Rashed is IEEE Senior Member and Associate
Editor of IEEE Access. He is a recipient of the Egyptian National Doctoral Scholarship (2006), JSPS postdoctoral
fellowship (2010), JAMIT best presentation award (2008 & 2012), and Chairman Award, Department of Computer
Science, University of Tsukuba (2010). He participated as a PI and CoI for several external funded projects.

	Search-Based Regression Testing Optimization
	Recommended Citation

	tmp.1720506635.pdf.dknTu

