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ABSTRACT Software projects are not void from bugs when they are released, so the developers keep
receiving bug reports that describe technical issues. The process of identifying the buggy code files that
correspond to the submitted bug reports is called bug localization. Automating the bug localization process
can speed up bug fixing and improve the productivity of the developers, especially with a large number
of submitted bug reports. Several automatic bug localization approaches were proposed in the literature
reviews which are based on the textual and /or semantic similarity among the bug reports and the source
code files. Nevertheless, none of the previous approaches made use of the source code complexity despite
its importance; as high complexity source code files have higher probabilities to be modified than the low
complexity files and are prone to bug occurrences. To improve the accuracy of the automatic bug localization
task, this paper proposes a Hybrid Bug Localization approach (HBL) that makes full use of textual and
semantic features of source code files, previously fixed bug reports, in addition to the source code complexity
and version history properties. The effectiveness of the proposed approach was assessed using three open-
source Java projects, ZXing, SWT, and AspectJ, of different sizes. Experimental results showed that the
proposed approach outperforms several state-of-the-art approaches in terms of the mean average precision
(MAP) and the mean reciprocal rank (MRR) metrics.

INDEX TERMS Bug localization, text mining, information retrieval, version history, code complexity,
textual similarity.

I. INTRODUCTION
Software projects are usually released while they still contain
bugs; so they set up Bug Tracking Systems (BTS) to receive
bug reports and manage bug fixes during the maintenance
phase [1]. Bug localization is an essential task during the
maintenance phase to locate the buggy files. It is a time-
consuming task to be donemanually, as the developers should
analyze the submitted bug reports and review a large number
of source code files. Bug reports are not standardized; they
are written using natural language. Sometimes the bug reports
contain terms from the associated buggy files. Also, bug
reports may contain stack traces [2]. The existence of stack
traces in the report is critical as it helps the developer to
narrow down the list of suspicious source code files [3].
Moreover, newly submitted bug reports may have textual
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similarity to previously fixed ones, so comparing the newly
submitted reports with the previously fixed ones will help
to locate bugs faster. Many approaches were presented for
bug localization using Information Retrieval (IR) techniques
[4]; where the submitted bug report was treated as a query,
to retrieve the top N similar source files sorted according to
their similarity score [2]. However, Bug localization based
on Textual Similarity is not enough to detect suspicious files.
Recent researches focus on exploring additional features
that increase the accuracy of bug localization [5]. Hybrid
approaches for bug localization have been proposed in the
literature, to enhance the performance of locating buggy files.
Hybrid approaches consider extra features when calculating
the similarity scores between the source code files and bug
reports [5]. These features include: (i) semantic similarity
between the source code and the bug reports, (ii) textual
and/or semantic similarity between the newly submitted bug
report and previous reports, (iii) Source code version history,
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and (iv) stack traces. However, none of the previous hybrid
approaches include all these features together. The work pro-
posed by Gharibi et al. [15] is considered the most compre-
hensive hybrid approach, but it does not include the source
code version history feature despite its importance. As source
files that were modified are likely to contain bugs [6]. Fur-
thermore, most source code files that are modified are getting
more complex. As developers usually do the modifications
under strict deadlines to avoid the critical cost. So, they do not
take into consideration the software design principles and the
clean code guidelines; which leads to the occurrence of code
smells, including complex code. High code complexity does
not indicate the existence of a bug but it indicates a violation
of one or more of the software design principles and may
lead to the occurrence of bugs [7]. Including the complexities
of source code files in the hybrid bug localization approach,
may enhance its performance. To our knowledge, none of the
previous approaches considered the code complexity feature
for enhancing the bug localization process.

A. RESEARCH OBJECTIVES
The main objective of this paper is to improve the perfor-
mance of the automatic bug localization task, to increase the
productivity of the developers, and to enhance the software
quality during the maintenance phase. The paper proposes a
hybrid bug localization approach (HBL) that leverages the
following extracted features: 1) Textual and semantic simi-
larity features between a newly submitted bug report and the
source code files, taking into consideration stack traces in the
bug reports, 2) Similarity between the newly submitted bug
report and the previously fixed reports, 3) Token matching
between bug reports and source code files. The tokens include
file names, class names, and method names, 4) The cyclo-
matic complexity of the source code files, and 5) The version
history of the source code files in the (VCS).

The remainder of the paper is structured as follows:
Section II briefs the related work in automating the bug local-
ization. Section III presents the architecture of the proposed
HBL approach. Section IV discusses the experiments and
the results. Finally, the conclusion and future work will be
presented in Section V.

II. RELATED WORK
Information Retrieval (IR) is a widely used technique to
automate the bug localization process.‘‘BugLocator’’ is one
of the efficient early approaches which were proposed by
Zhou et al. [2]. Buglocator utilized the revised Vector Space
Model (rVSM) for representing the bug reports and the source
code files. The localization process is based on measuring
the textual similarity between the new bug report and each
of the source code files and the previously fixed reports. The
experiments were performed on four open-source projects
with their associated bug reports (e.g. AspectJ, Eclipse, SWT,
and ZXing). The results show that BugLocator effectively
locates buggy files. For example, it can locate up to 80%

of bugs in the Eclipse project and 60 % bugs in the AspectJ
project.

Saha et al. [8] proposed Bug Localization Using Struc-
ture Information Retrieval (BLUiR) where essential terms
were extracted from the Abstract Syntax Tree (AST) of the
source code such as class names, variables names, meth-
ods names, and comments. Also, the description and sum-
mary of each bug report were tokenized. BLUiR used Okapi
BM25 to calculate the similarities between the bug reports
and source code files, The experimental results showed that
BLUiR is superior to BugLocator and other bug localization
tools [10], [11].

Wong et al. [11] proposed ‘‘BRTracer’’ which divided
the source code into several segments, then measured the
textual similarity between each code segment and each bug
report. Also, they measured the similarity between the stack
traces included in the bug reports and the code segments.
BRTracer was assessed over three software projects (e.g.
AspectJ, Eclipse, and SWT). The results showed that the
performance of BRTracer outperforms the BugLocator even
when BRTracer discards the similarity with previous bug
reports.

Wang et al. [6] proposed the ‘‘Amalgam’’ framework for
locating buggy files using the version history, similar reports,
and the structure of (BLUiR). The experimental results over
Four software projects (e.g. AspectJ, Eclipse, SWT, and
ZXing) showed an improvement up to 24.4 % in terms of
mean average precision (MAP) in comparison to BugLocator
and 16.4 % in comparison to BLUiR [2], [8].

Rahman et al. [12] proposed an approach for bug local-
ization using the version history component by tracking the
source files that frequency changed as it has a higher chance
to contain bugs. The approach has modified the (rVSM) of
Zhou et al. [8] by combining it with the score of the frequency
of past fixed source code files to get (MrVSM). The results
show on large-scale implementation of three open-source
projects (e.g. SWT, ZXing, and Guava) improve 7 % in terms
of Mean Reciprocal Rank (MRR) and up to 8 % for (MAP)
compared with techniques of (BLUiR), (BugLocator), and
(Amalgam) [2], [6], [8].

Wang et al. [13] presented an updated version of the Amal-
gam approach called (Amalgam+) Which locates buggy
source code files given a set of bug reports. The proposed
approach has been utilizing five features components (e.g.
version history component, similar bug report component,
Structure component, Stack trace component, and reporter
information component). The result of (Amalgam+) over the
four open projects (e.g. AspectJ, Eclipse, SWT, and ZXing)
show an improvement in term of (MAP) by 6.0%over (Amal-
gam). Also, compared with state-of-the-art approaches [7],
[10], [11], [13].

Zhou et al. [14] presented an approach that leverages the
feature of part-of-speech in bug reports and the relationship
between source code files to enhance the performance of bug
localization. The results show over six open source projects
(e.g. AspectJ, SWT, ZXing, Eclipse, Birt, and Tomcat ) can
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improve the accuracy for all those projects in comparison
with (BugLocator) and other techniques of existing bug local-
ization approaches [7], [10], [11], [13].

Youm et al. [15] presented Bug Localization using Inte-
grated Analysis (BLIA v1.0). It is a file-level bug localization
approach that utilizes the textual properties between the bug
reports and source code files. In addition to, the stack traces
in the bug reports, the structure information of the source files
and code change history features. (BLIA v1.0) was evalu-
ated over three open-source projects (e.g. AspectJ, SWT, and
Zxing); and it was found that BLIA v1.0 outperforms some
baseline approaches [2], [6], [8], [11] in the terms of (MAP)
and (MRR).

Youm et al. [16] presented an amended version of (BLIA
v1.0) called (BLIA v1.5) which can detect each of the buggy
source code files and source code methods. The proposed
approach integrated hybrid features from both source code
and bug report files. Those features include texts, stack traces,
and developer comments from bug reports. Also, structure
information and version history were extracted from source
code files. BLIA v1.5 was evaluated over three open-source
projects (e.g. AspectJ, SWT, and ZXing). The results show
that BLIA v1.5 outperforms baseline approaches in the terms
of (MAP) and (MRR) [2], [6], [8], [11], [15].

Gharibi et al. [17] presented a multi-component bug local-
ization approach which is sometimes referred to as a hybrid
bug localization approach. Hybrid approaches leverage var-
ious features of the bug reports and the source code such
as syntactic and semantic textual features, stack traces to
narrow down the search space of source files. The results
show the performance of the proposed approach that applied
on three open-source projects (e.g. AspectJ, SWT, and Zxing
) can locate appropriate buggy source code files up to 52 %
by recommending one source code file and up to 78 % by
recommending top ten source code files compared to state-
of-the-art approaches [7], [10], [11], [13], [14].

Swe and Oo [18] presented a bug localization approach
based on information retrieval. The proposed approach has
three components: Structure source code component, fixed
bug report component, and combining the score component.
The results show the performance of the proposed approach
that was applied on three open-source projects (e.g. SWT,
AspectJ, and Eclipse) are 42.7 %, 15.6%, and 23.8% in terms
of (MAP). Also, in terms of (MRR), the proposed approach
achieves 52.4 %, 27.1%, and 33% respectively.

One of the recent studies that tackle the bug localiza-
tion problem was conducted on the method level instead
of the file level. Zhang et al. [19] proposed an approach
called (FineLocator) that implements bug localization at
the method level by using the features of call dependency,
semantic similarity, and temporal proximity. The experi-
mental results on the (ArgoUML, Maven, AspectJ, Ant,
and Kylin) show that FineLocator can improve the per-
formance of bug localization at the method level at the
average by 20%, 21%, and 17% at Top-N, MAP, and MRR
respectively.

Wang et al. [3] used a supervised topic modeling approach
for bug localization. They utilized five features which are
the history of bug fixing, terms that appear in bug reports
multiples times in related source files, the size of the source
file, meta information of bug reports, and stack traces.

Swe and Oo [18] introduced a learning-to-rank approach
that leverages the domain knowledge through different parts
of source code files includes API, bug-fixing history com-
ponent, and code change history component. The proposed
approach ranking set of source code files given a set of bug
reports as input based on the computing weights of each com-
ponent. The results show that a learning-to-rank approach
outperforms the BugLocator and state-of-the-art approaches.
In particular, it can extract correct recommendations within
the top 10 of ranked source code files up to 70%of bug reports
in the Eclipse and Tomcat open-source projects.

Some recent studies leveraged Deep learning techniques
to solve the bug localization problem. Deep learning was
used to overcome the lexical gap between the terms in bug
reports and source code tokens. Lam et al. [21] presented an
approach that uses Deep Neural Network (DNN) in combina-
tion with rVSM to enhance the accuracy of bug localization.
Their experimental results showed that the proposed DNN
based approach achieves higher accuracy than BugLocator
and another two approaches, using 10 fold cross-validation
[18], [22].

Xiao et al. [22] proposed a DeepLoc approach, which is
based on deep learning techniques that take all advantages
of semantic information. DeepLoc is an enhanced convo-
lution neural network (CNN) that combine the features of
bug–fixing recency and frequency with word-embedding to
enhance the lexical gap of similarities between source code
files and bug reports. Deeploc is tested and evaluated on over
18,500 bug reports associated with their open-source projects
(e.g. Eclipse, AspectJ, SWT, JDT, and Tomcat. The results
show that the proposed approach achieves up to 13.4% higher
in the term of (MAP) than CNN. DeepLoc outperforms state-
of-the-art approaches [2], [20], [22].

Liang et al. [24] presented Customized Abstract Syntax
Tree (CAST), which exploits deep learning techniques with
customized abstract syntax trees of source programs to locate
buggy source files effectively. CAST extracts both lexical-
semantic from bug reports and source code files. Moreover,
CAST enhances the Tree-Based ConvolutionNeural Network
(TBCNN)withAbstract Syntax Tree (AST). The result shows
on widely-used open source projects that CAST outperforms
state-of-the-art approaches in detecting buggy source files.

However, deep learning-based approaches can only be uti-
lized with large-scale projects. As the models require training
on a large amount of data. While the proposed hybrid bug
localization approach could be utilized with small, medium,
and large scale projects.

A. RELATED WORK TECHNIQUES ANALYSIS
Table 1 summarizes the main features utilized by the previ-
ous hybrid bug localization techniques. Different techniques
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TABLE 1. Comparison among the features utilized by the previous hybrid bug localization approaches.

combine different features of bug reports and source code
files to increase the performance of bug localization. The
table lists the previous work according to the performance of
each technique from the lowest to the highest performance.
It should be noted that all these techniques were experimented
with the same datasets and used the same performance met-
rics. As could be observed the more features included in the
approach, the better performance of locating the buggy file(s)
given a bug report. The following notes could be observed
in Table 1: 1) None of the previous techniques leveraged the
existence of the code complexity property, 2) The version his-
tory component was utilized by four studies, and the authors
showed its effectiveness in locating the bug reports. However,
no one combined the feature of source code complexity with
modified source code files at the version control system
(VCS), 3) Although Gharibi et al. [15] have combined most
of the features (e.g. Token Matching, VSM similarity, Stack
Trace, Semantic Similarity, and Previous Fixed Reports),
their approach lacks both of the code complexity and version
history properties, which are considered important features
as the high complexity files have higher probabilities to be
modified than the low complexity files and consequently
are bug-prone. The paper proposes a hybrid bug localization
approach that makes use of the code complexity and version
history properties, in addition to all the features included in
the work of Gharibi et al. [17].

III. PROPOSED HYBRID BUG LOCALIZATION APPROACH
(HBL)
This section presents our novel hybrid bug localization
approach (HBL) that benefits from each of the complexity
of the source code files and the version history because
of the critical issues that happened when the source code
changes frequently and become more complex, in addition
to other features such as the similarity between the newly
submitted bug reports and the previously fixed ones as the
previous fixed files are more likely to produce bugs. Also,
both the textual and semantic similarity between the newly
submitted bug reports and the source code files because the
common tokens between source files and bug reports are
indicating the location of bugs in source files. The proposed
HBL approach, as depicted by Fig.1, includes three-stages,
the parsing& pre-processing stage, the Individual feature
scores stage, and the combined scores stage. When a new bug
report is received, it is parsed and preprocessed then fed to
the individual scores stage. On the other hand, source code
files are retrieved from the (VCS), parsed and preprocessed,
then fed to the individual feature score stage. Then each
component in the individual score stage assigns scores to the
suspicious source code files. Finally, the individual scores
are combined to generate a list of suspicious source files.
The following subsections discuss the proposed solution in
detail.
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FIGURE 1. The overall design of HBL.

A. PARSING & PRE-PROCESSING STAGE
This is the first stage of the proposed approach. It aims to
extract the key tokens from each of the bug reports and the
source code and remove the unnecessary tokens for the HBL
approach. This stage includes two main steps which are:
parsing and pre-processing.

1) PARSING
The source code was parsed to extract the different identifiers
such as class names, methods, and variables’ names. While,
the bug reports were parsed to extract the report summary,
description, and open date.

2) PRE-PROCESSING
Natural language processing techniques were applied to each
of the source code and the bug reports. Each of the parsed
bug reports and the source code was tokenized and stemmed
using Porter stemmer. Stemming converts tokens to their
base (e.g. ‘‘goes’’ and ‘‘gone’’ are converted into ‘‘go’’).
The Camel Case tokens were split into separate tokens (e.g.
’’ViewImage’’ was transferred into ‘‘view’’ and ‘‘image’’).
Furthermore, English stop words were removed such as punc-
tuation marks, numbers, and keywords of programming lan-
guage. Stemming and stop word removal reduce the number
of tokens and remove the noise. Finally, parts of speech (POS)

tagger was applied for classifying the tokens into a noun,
verb, etc.

B. INDIVIDUAL FEATURE SCORE STAGE
This stage comes after the parsing and pre-processing stage
where both source code files and bug reports have been
prepared well. A detailed analysis has been done on the bug
reports and source code files to extract each feature from
them. Furthermore, give a score for each feature to combine
them at the final stage.

1) STACK TRACE SCORE
Abug report is a document that contains all information about
an error or critical issues in the software system. Usually, it is
submitted by the users of the system. A bug report consists
of several fields, but the most important fields are ‘‘bug id’’,
‘‘open date’’, ‘‘summary’’, and ‘‘description’’. Fig.2 is an
example of bug reports for the SWT project. The bug report id
‘‘75739’’ that was open in ‘‘06-10-2004’’ contains a problem
that was explained in the ‘‘summary’’ and ‘‘description’’
fields, where they share common tokens between them and
their associated source code files and methods. Some bug
reports contain stack traces, this may help to better localize
bug with more accurate and enhance the performance as the
stack trace contain the frames that cause the bugs. Therefore,
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FIGURE 2. Bug report of SWT project without Stack Trace.

the score of stack trace can be calculated as:

Stack_Trace_Score =

{
1

ranks if s is in the stack trace
0 otherwise

(1)

ranks is the score of ranked source files in the stack trace
and ‘‘0’’ will be given if the source files not found in the Stack
Trace. Fig. 3 is an example of bug reports for the SWT project
that contains a Stack Trace.

2) PREVIOUS FIXED BUGS SCORE
Previous fixed bugs reports are responsible for produced new
bugs as fixed bugs usually try to fix similar source files.
Therefore, by using old fixed bug reports, we can find the
source code files that cause bugs that are reported in new
bug reports. we use the multi-label classification that was
proposed by Gharibi et al. [17] to get the probability score
for relevant source code files for newly bug reports. where
the terms of previous fixed bug reports will be an input
and their fixed methods will be the labels in the multi-label
classification. The previous fixed bug score will be calculated
as:

SimilarScore(f i)=
B∑

AllSiConnectedtof i

Similarity (Bi,Si)
ni

(2)

where B is the new bug received and S is all previous bug
report that has been fixed. So the similar score for file f i
calculated by getting all Si that connected to f i,ni is the
number of files that have been modified to fix Si [17].

3) TOKEN MATCHING SCORE
Token Matching is the process of checking whether a token
that belongs to a source code exists among the tokens of a
bug report or not. A score is calculated based on counting the
number of matched tokens between a bug report and every
source code file. A score of zero is given in case of no match
between the bug report and a source code file.

4) REVISED VECTOR SPACE MODEL (RVSM) SCORE
The vector space model (VSM) has been broadly utilized
within the conventional Information Retrieval (IR) field.

Most search engines also use similarity measures based on
this model to rank Web documents. The model creates a
space in which both documents and queries are represented
by vectors. The revisedVector SpaceModel (rVSM)was used
in our approach which is proposed by Zhou et al. [2]. rVSM
represents bug reports and source files as a set of the vector
of term weight, then extracts tokens of bug reports from the
summary and description. Also, from source files, we extract
tokens of the class name, methods name, and noun tokens in
comments to build their vectors, the score is calculated by the
following equation:

wi,d = 1+ log(tf i,d )× log(
#src_files

df i
) (3)

wherewi,d of term i in document d that clarifies the number of
appearance term i in document d. #src_files is the total source
code files in the collection while df i refer to the document
frequency of term i that appear in the document, after that,
cosine similarity is been used between bug reports and source
code files as:

cos (b, s)=
−→
V b
−→
·V s

|Evb| × |Evs|
(4)

where Evb the vector of term weights for bug reports b and Evs
are the vector of term weights for source files swhile |Evb| and
|Evs| refer to the length of the vectors and calculated as :

|Evd | =
√
w2
1,d+w

2
2,d + . . .+ w

2
v,d (5)

Then combine the source file’s length score with the result
of cosine similarity to enhance the result of MAP and MRR
according to Zhou et al. [8] and calculated as:

LenScores (#terms)=
1

1+ e−N(#terms) (6)

where lenScore for each source code file is calculated by
counting the number of terms (i.e. class names, method
names, variables, and the comment). Finally, multiplying (4)
and (6) we get the final formula of (rVSM) score as:

SimilartiyScore = cos (b, s)×LenScores (#terms) (7)

The SimilartiyScore is calculated for each bug report b
according to relevant source files to get similarities between
them.
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FIGURE 3. Bug report of SWT project with Stack Trace.

5) SEMANTIC SIMILARITY SCORE
The textual similarity is not accurate enough to detect the
similarity between a bug report and a source code file due
to lexical mismatching; which degrades the performance of
locating a bug to relevant source files. So, measuring the
semantic similarity between the bug reports and the source
files is a necessity. Several approaches were proposed in
the literature, that build vector representation to the words.
These vectors are called word embedding vectors; which
hold the semantic relation between the words.Word2Vec and
Glove1 are themost widely usedmodels for word embedding.
Word2Vec uses an artificial neural network model to detect
word associations given a large corpus of text. While the
glove is utilized the convolutional neural network (CNN),
which is one of the architectures of the deep learning models.
We used Glove in the proposed approach for generating the
embedding vectors related to tokens of each bug report and
source code file. Cosine similarity was used to calculate the
semantic similarity score. We selected Glove in this work as
it is a pre-trained model on a huge corpus, in addition to it is
based on deep learning techniques. The Semantic Similarity
Score is calculated according to equation (4).

6) VERSION HISTORY SCORE
Software projects are frequently subject to change to solve
issues or fix bugs. These changes may fix the current issues
but may lead to other bugs [25]. Software changes are tracked
by a Version Control System (VCS) that keeps all versions
of software and theirs commits of changing. We can extract
information from a VCS about the commits that have been
made, according to the following rules:

• The commit history should contain files that have been
changed with a change type that can be added, deleted,
modified, or renamed.

• The modification must be done over a specific period of
days.

1 Online: https://spacy.io/usage/vectors-similarity

the commits are analyzed and a score is assigned to the files
that have been modified according to equation (8):

ChangeScore (f , k,R)=
∑

c∈R∧f∈c

1

1+ e
12(1−

(
k−dc
k

)
)

(8)

whereR refers to the relevance of commits for each file f that
have been done within dc, dc refers to the consumption time
between a relevant commit C and a bug report during past k
days [16].

7) CODE COMPLEXITY SCORE
Complex source code files indicate a poor software design,
due to the violation of fundamental design principles; which
degrades the code quality and may cause bugs in the
future [26]. Cyclomatic Complexity (CC) is one of the soft-
ware metrics that is used to measure the complexity of the
methods and classes in the source code [7]. Table 2 shows
the (CC) values and their corresponding meaning, cost,
and effort. As could be observed (CC) values range from
1:10 means that the code is clean and does not suffer any
complexity, so the cost and effort of its maintenance are low.
While the (CC) values range from 10:20, indicates that the
code is quite complex and its maintenance cost and effort is
medium. When the (CC) value of 20:40, indicates that the
code is very complex and it requires very high effort. IF (CC)

TABLE 2. Comparison among the Cyclomatic Complexity numbers and
their meaning.
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TABLE 3. Cyclomatic Complexity and version history properties OF SAMPLE bug reports and their fixed source files from SWT repository.

greater than 40, this means that the code is never passed all
test cases [25] and requires code refactoring. In this work,
we calculated the (CC) for each source code file that has
been modified to solve an issue or fix a bug, then scores were
assigned to the files according to equation (9) as follows:

Code_Complexit_Score =

{
1 if (CC) ≥ 40

0 otherwise
(9)

PyDriller2 was utilized in our experiments to retrieve the
modified files and to calculate their Cyclomatic Complexi-
ties. Table 3 shows sample bug reports and their fixed source
files, retrieved from the SWT repository; as could be observed
that the source files that needed fix have high CC values.
Moreover, the source files have been modified before sub-
mitting the bug report.

C. COMBINING SCORE STAGE
This is the final stage in our approach where the combined
score is calculated through the linear combination of the
scores resulting from the feature components using equation
(10):

Final_Score =
n∑
i=1

wi× ScoreStage (10)

where wiε [0,1] represents the different weights (e.g.
w1,w2,w3,w4,w5,w6,w7) contributions of the previously
discussed seven features in the final score that determines the
top n suspicious files.

IV. EXPERIMENTS AND RESULTS
In this section, firstly we will discuss the dataset that is
used in the proposed approach. Also, the evaluation met-
ric. Secondly, the implementation details will be discussed

2Online: https://pydriller.readthedocs.io/en/latest/intro.html

to show the structure of each component in the proposed
approach. Finally, the result will be presented to evaluate the
proposed approach.

A. DATASET
In our proposed approach, we use the same benchmark
dataset presented by Zhou et al. [2] The datasets consist
of three open-source projects ZXing,3 SWT,4 and AspectJ,5

and their relevant bug reports. Table 4 shows some statistics
related to these projects such as the study period for the bug
reports, the number of bug reports, the number of source files,
and the number of reports containing stack traces.

TABLE 4. Statistics of the benchmark dataset [2].

B. EVALUATION METRICS
Three evaluation metrics have been used in the literature to
assess bug localization systems which are: Top@N, MAP,
MRR.

3Online: https://github.com/zxing/zxing
4Online: https://www.eclipse.org/swt/
5Online: https://www.eclipse.org/aspectj/
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1) Top@N
is defined as the number of bug reports whose related source
files are ranked in the top N retrieved source files; N was set
to equal 1, 5, 10. For a bug report, if the top N source files
include at least one related file, we consider it a hit.

2) MEAN RECIPROCAL RANK (MRR)
is a statistic measure for evaluating any system that pro-
duces for a query, a list of possible responses ordered by
the probability of correctness. The reciprocal rank (RR) of
a bug report response is the multiplicative inverse of the rank
of the first related source file in the source files: 1 for first
place, 0.5 for second place, 0.33 for the third place, and so
on. Assume, a set of bug reports BR and the rank of the first
relevant source file for bug report i is firsti, then MRR is
defined as the average of the RR of the results for BR and
is given by the equation:

MRR =
1

|BR|

|BR|∑
i=1

1

firsti
(11)

MRR measures the effectiveness of the retrieval process.
The higher the MRR value, indicating the better performance
of bug localization.

3) MEAN AVERAGE PRECISION (MAP)
Is a metric used in information retrieval applications to evalu-
ate howwell are the retrieved results as a response for a query;
in our context, the bug report is the query,

MAP for a set of queries is defined as the mean of the aver-
age precision scores (AvgP) for each query and is calculated
using equation 13 as follows:

MAP =
|BR|∑
i=1

AvgP(i)
|BR|

, AvgP =
∑

keS Prec@k
m

(12)

4) WHERE Prec@k
is the retrieval precision over a set of k source files in a ranked
list of m files and it is calculated using equation 14:

Prec@k =
# of relevant source files in top k

k
(13)

The higher the MAP, the better the performance of the bug
localization system.

C. SYSTEM TUNING
The version history score, which is calculated using equation
8 includes an important parameter that affects the perfor-
mance of the bug localization, which is the k parameter. We
experimented with different values to the k (50,90,120,150).
On the other hand, the y-axis represents the MAP values. Fig.
4 shows the MAP values at the different settings of k. As
could be observed the maximum value of the MAP is reached
at k = 120. Fig. 5 shows that the maximum value of theMRR
is reached at k = 120 too. So, we set the value of k to 120 in
all of our experiments.

FIGURE 4. Impact of the K value on MAP metric.

FIGURE 5. Impact of the K value on MRR metric.

D. RESULTS AND DISCUSSION
The following observations were made as a result of exper-
iments conducted by (HBL), Table 5 show statistics related
to the three open-source projects. We could observe that in
the AspectJ project, there are 84.5 % of total source files
suffer from high complexity and modified past days. In the
SWT project, there are 96.9 % of total source files suffer

TABLE 5. Statistics of the open-source java projects.
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TABLE 6. A Comparison between HBL and the other approaches.
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FIGURE 6. The comparison result of Top 10, MRR, MAP on AspectJ.

from high complexity and modified past days. In the ZXing
project, there are 51.4 % of total source files suffer from high
complexity and modified past days. As shown in Fig. 6 that
explains the comparison of different results among differ-
ent approaches in the AspectJ project. (HBL) recorded the
highest values in terms of the metric of top 10, MRR, and
MAP except for the BLIA’s v1.5 MAP, top@5, and top@10.
Because AspectJ includes low complex source files. Also,
the number of modified files past days before submitting the
bug report not huge compared to the SWT project. Although
BLIA v1.5 outperforms in MAP metric, it requires more
time for running because BLIA v1.5 run in two phases,
the first phase generates a list of suspicious files, the second
phase take the list of suspicious files as input and applying
textual similarity between methods in ranked files & newly
submitted bug report to rank suspicious methods. (HBL) has
archived (76.2 %) in top@10, (58%) in MRR, and (34%)
in MAP. Fig. 7 presented the results of different approaches
in the SWT project, (HBL) also recorded the highest value
among different approaches. As we could observe, the results
in SWT achieved the highest among all datasets because
96.9% of the project includes high complexity source files
and have been modified past days before submitting a new
bug report. (HBL) has achieved (91.8%) in top@10, (78%)
in MRR, and (67%) in MAP. Fig.8 presents the results
of different approaches in the ZXing project, (HBL) also
recorded the highest value among different approaches except
for BLIA v1.5’s MAP, it outperforms in the MAP metric
because 51.4 % of ZXing project only suffer from high
complexity and have been modified past days. (HBL) has
achieved (90%) in top@10, (70%) in MRR, and (58%) in
MAP. The proposed approach has exceeded the different
approaches in all evaluation metrics because the utilization
of source code analysis that has been used as (HBL) is the

FIGURE 7. The comparison result of Top 10, MRR, MAP on SWT.

FIGURE 8. The comparison result of Top 10, MRR, MAP on ZXing.

only approach that used the feature of code complexity as
feature selection that makes improves different approaches.
Also, it has used the property of version control system (VCS)
which was missed at Gharibi et al. [17]. Table 6 summarizes
all results for the three projects (e.g. AspectJ, SWT, and
ZXing) with all evaluation metrics (e.g.Top@1, Top@5,
Top@10, MRR, and MAP), The bold values in Table 6 mean
the highest values of each given metric, as shown the
proposed approach outperforms the different approaches
(e.g. Gharibi et al. [17], BLIA v1.5 [16], Amalgam [6],
Rahman et al. [12], BRTracer [11], BLUiR [8],
BugLocator [2], Swe and Oo [18]). In the three open projects
of Swe and Oo [18] achieved the lowest performance as it
has used two feature selections only (e.g. VSM similarity
and Fixed bug report). BugLocator [2] showed a significant
outperform over Swe and Oo [18] by enhancing the VSM
with a revised Vector Space Model (rVSM) that increases the
accuracy of bug localization. BLUiR [8] showed a significant
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FIGURE 9. The average performance of each feature in (HBL).

improvement over Swe and Oo [18], and BugLocator [2] as
it enhances the performance of bug localization because it
depends on the structure information that is based on code
structure. BRTracer [11] outperforms the previous approach
(e.g. Swe and Oo [18], BugLocator [2], and BLUiR [8])
as the feature of stack trace added beside the VSM sim-
ilarity and fixed bug reports. Also, Amalgam [6] outper-
forms the previous approaches (e.g. BugLocator, BLUiR,
and BRTracer) due to the feature of version history that
makes significant improvement and achieved high value in
all evaluation metrics. BLIA v1.5 [16] has improved the per-
formance by implementing the bug localization on file level
and method level. Furthermore, it has added the comments
of bug reports that added more information about the bugs.
Gharibi et al. [17] have improved the performance among
the previous approaches because of adding extra property
(e.g. POS tagging, Token matching, VSM similarity, Stack
Trace, Semantic similarity, and Fixed bug report). (HBL) has
achieved the highest performance due to adding the features
of source code analysis that merge the property of version
history and complex files that indicate that source files are not
clean code and suffer from high complexity. Fig. 9 shows the
average performance of each separate feature on (HBL) in the
metric of Top@10 at all three open projects. VSM similarity
achieved (31%) that considered the highest value affected
the performance because the common tokens between bug
reports and source files have a higher score. Token match-
ing achieved (20%) as it calculates exact matching tokens
between bug reports and source code files. Semantic simi-
larity achieved (19%) as it overcomes the problem of lexical
mismatching that make the process of bug localization is a
tedious task. Previous Fixed bug report plays an important
role in enhancing the performance, it has achieved (18%)
as the previous fixed bug report may be responsible for
producing the same bugs in the future. Version History &

Complexity has been achieved (7%), it merges the property
of version history and code complexity together which affects
the performance of (HBL). Finally, stack trace archived (5%)
which considers the lowest value as not all bug reports contain
stack traces, so this feature depends on the quality of bug
reports.

V. CONCLUSION AND FUTURE WORK
The software maintenance phase is crucial for the software
projects to fix issues and bugs, that might arise after the soft-
ware release. During the maintenance phase, developers were
assigned a large number of bugs that should be fixed as fast as
possible to enhance the software quality. The paper proposed
a methodology for automating the bug localization process
to increase the developer’s productivity. The proposed hybrid
bug localization approach (HBL) automatically locates the
buggy source code files given a set of bug reports. The
proposed HBL leverages the textual and semantic features
of the source code, previously fixed reports, and the newly
submitted ones; in addition to the source code complexity
and version history properties. HBL includes three stages;
the first stage is the parsing and pre-processing of the source
code files and bug reports. the preprocessed source code files
and bug reports are passed to the second stage to calculate
the individual scores according to the different extracted
features. Finally, the third stage combines each feature score
to get the final score and generates a list of suspicious
files for each source code file. The effectiveness of the pro-
posed approach was assessed using three open-source Java
projects, ZXing, SWT, and AspectJ. Experimental results
showed that the proposed approach outperforms several state-
of-the-art approaches in terms of theMean Average Precision
(MAP) and the Mean Reciprocal (MRR) metrics. Further-
more, the proposed approach is suitable for large-scale and
small-scale projects.

This work could be extended such that the buggy methods
could be located the same as locating the buggy files.
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