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Abstract: Regression testing is an essential quality test technique during the
maintenance phase of the software. It is executed to ensure the validity of the soft-
ware after any modification. As software evolves, the test suite expands and may
become too large to be executed entirely within a limited testing budget and/or
time. So, to reduce the cost of regression testing, it is mandatory to reduce the size
of the test suite by discarding the redundant test cases and selecting the most
representative ones that do not compromise the effectiveness of the test suite in
terms of some predefined criteria such as its fault-detection capability. This pro-
blem is known as test suite reduction (TSR); and it is known to be as nondeter-
ministic polynomial-time complete (NP-complete) problem. This paper
formulated the TSR problem as a multi-objective optimization problem; and
adapted the heuristic binary bat algorithm (BBA) to resolve it. The BBA algo-
rithm was adapted in order to enhance its exploration capabilities during the
search for Pareto-optimal solutions. The effectiveness of the proposed multi-
objective adapted binary bat algorithm (MO-ABBA) was evaluated using 8 test
suites of different sizes, in addition to twelve benchmark functions. Experimental
results showed that, for the same fault discovery rate, the MO-ABBA is capable
of reducing the test suite size more than each of the multi-objective original binary
bat (MO-BBA) and the multi-objective binary particle swarm optimization (MO-
BPSO) algorithms. Moreover, MO-ABBA converges to the best solutions faster
than each of the MO-BBA and the MO-BPSO.

Keywords: Binary bat algorithm; mutation testing; regression testing; software
testing; test suite reduction; heuristic algorithms

1 Introduction

Software testing is one of the crucial activities in the software development lifecycle. It is used to detect
software defects and ensure that the software is delivered with high quality. Any modifications in one of the
software components may affect one or more other components, which necessitates the re-execution of the
earlier test cases in addition to the newly generated ones [1]. As a result, the test suite size expands over time
and may include redundant test cases. Moreover, it may not execute in it is entirely within the testing budget
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and/or time. Testing the behavior of the whole system under test (SUT) after each modification is called
regression testing [2]. Regression testing is expensive and it accounts for almost one half of the cost of
testing [3]. Rothermel et al. [3] reported a case in the industry where executing a complete regression test
suite (of a 20K LOC product) required seven weeks. In order to reduce the cost of regression testing, it is
necessary to reduce the number of test cases in the test suite without compromising its effectiveness, in
terms of some predefined criteria [4,5]. This problem is known as the test suite reduction (TSR) problem.
One way to assess the capabilities of the reduced test suite, in discovering bugs, is through the utilization
of a fault-based testing technique called mutation testing. Mutation testing [6] is a white-box testing
technique, which calculates a score for the test suite that indicates its capability on discovering bugs in
the SUT. The TSR problem is known to be a combinational multi-objective optimization problem, that
can be described as a set covering problem; which is known to be NP-complete. In practice, there is no
exact solution for NP-complete problems, however, suboptimal solutions could be found using search-
based optimization algorithms [7].

Researchers have proposed various test suite reduction approaches [8]. The majority of these approaches
are in the form of a white-box [9]. They aim at reducing the test suite without compromising test
requirements such as statement coverage, fault detection capability rate, etc. Most of these approaches
utilized greedy algorithms to solve a single objective TSR (SO-TSR) problem [8]. Recent approaches
used heuristic algorithms to solve the multi-objective TSR (MO-TSR) problem [8,10–15] in addition to
the SO-TSR [16,17]. Some studies demonstrate a comparison between the performance of heuristic and
greedy algorithms in solving the TSR problem; Sun et al. [17] showed experimentally that the Binary
Particle Swarm Optimization (BPSO) algorithm outperforms greedy algorithms in solving the SO-TSR
problem. Most of heuristic based approaches for solving the MO-TSR problem utilized Non-dominated
Sorting Genetic Algorithm II (NSGAII) or its variants [10,14,15]. Yoo et al. [12] showed experimentally
that the NSGAII is superior to greedy approaches in solving the MO-TSR problem. Wang et al. [13] used
three types of weighted-sum genetic algorithm (GA) and showed experimentally the superiority of the
random-weighted GA over the NSGAII and some other popular multi-objective optimization algorithms.
Moreover, Mohanty et al. [11] used Ant Colony (ACO) in their proposed approach for solving the MO-
TSR problem.

Aims and Contributions

The main aim of this paper is to propose a heuristic based approach to solve the multi-objective TSR
problem. The proposed approach is based on the Bat algorithm (BA) [18,19]; which is a swarm
intelligence search algorithm inspired from the echolocation behavior of bats. Echolocation works as a
type of sonar; a bat emits a loud sound, and an echo returns when that sound hits an object. The
combination of echolocation with swarm intelligence enhances the properties of swarm-based algorithms;
which makes BA more effective than other swarm-based algorithms in some contexts [18,20]. Yang [18]
showed empirically that BA outperforms each of the GAs [21] and Particle swarm Optimization (PSO)
[22,23] over some benchmark functions. Chawla et al. [20] surveyed some applications in the areas of
computer science, medical and electrical engineering where the BA surpasses GA, PSO and ACO
algorithms. However, the BBA occasionally fails to discover the global best solution for some multi-
modal functions.

Our contributions to accomplish the above-mentioned aim can be summarized as follows:

Proposing modifications to the original Binary Bat algorithm (BBA) to enhance its exploration and
exploitation capabilities; to reduce its occasional failure to converge to global optimum solutions.

Evaluating the performance of the adapted (modified) binary bat algorithm (ABBA) against each of the
BBA and the binary PSO (BPSO) [24] algorithms, over a set of different unimodal and multi-modal
benchmark functions of different ranges (the unimodal function has only one minima location which is
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the global best solution; while the multi-modal function has more than one local minima locations but only
one of them is the global best solution).

Formulating the TSR problem as an optimization problem and defining a fitness function based on two
objectives which are: (i) the execution cost of the reduced test suite and (ii) the effectiveness of the reduced
test suite in terms of its mutation score. The variable weighted sum method [19] was utilized to form the
multi-objective fitness functions, which guides the BBA to search for the non-dominated solutions that
provides an optimum balance between the cost and effectiveness of the reduced test suites.

Evaluating the performance of the multi-objective ABBA (MO-ABBA) against each of the multi-
objective BBA (MO-BBA) and the multi-objective BPSO (MO-BPSO) in solving the multi-objective
TSR problem over eight test suites of different sizes.

The rest of the paper is organized as follows: Section 2 introduces some important preliminaries for this
work. Section 3 discusses the previous studies that tackled the TSR problem. Section 4 presents the multi-
objective adapted binary bat algorithm for solving the TSR problem. Section 5 discusses the experiments and
results. Finally, Section 6 concludes the paper and introduces possible extensions to this work.

2 Preliminaries

2.1 Test Suite Reduction Problem

Given: A test suite TS which includes d test cases, and a set of mutants mu1; . . . ; munf g, that should
be killed to provide an adequate testing of the SUT. Each test case tcj can kill one or more mutants mui.

Problem: Find an adequate subset TS
‘

� TS that can kill as many as possible number of mutants and
includes as few as possible number of test cases. These two objectives are contradictory; this is the reason we
formulated the TSR problem as a multi-objective optimization problem.

2.2 Pareto Optimal Concepts

In the multi-objective optimization problems, there is no single solution but a set of multiple trade-offs
solutions [25]. The vector of decision variables that optimizes the considered objective functions and satisfy
the problem constraints is called a Pareto front. Thus, the Pareto front is a set of Pareto solutions which are
not dominated by any other solution. A solution x ¼ x1; x2; : : :; xn½ � is said to dominate a solution
y ¼ y1; y2; : : :; yn½ �, if and only if y is not better than x for any objective i ¼ 1; 2; : : :; n, and there
exists at least one objective xi in x which is better than its corresponding objective yi in y. On the
contrary, two solutions are said to be non-dominated when none of them dominates the other. Fig. 1
depicts the difference between dominated and non-dominated solutions and represents the Pareto front. In
the figure, the objective functions f 1 and f 2 are to be minimized. It is obvious that solution A dominates
solution D because f 1 Að Þ < f 1 Dð Þ and f 2 Að Þ < f 2 Dð Þ: Moreover the solutions A;B and C are non-
dominated solutions because none of them is better than the others in both objectives; as A is the best for
objective f 1, whereas C is the best for f 2 objective, and B is better than A for objective f 2 and better
than C for the objective f 1. The set of non-dominated solutions of the multi-objective optimization
problem is called the Pareto optimal set, and its representation in the objective space is the Pareto front.
This set satisfies two properties: (i) any solution found is dominated by at least one solution in the Pareto
set, and (ii) every two solutions in the set are non-dominated to each other.

2.3 Bat Algorithm

Bat algorithm (BA) is one of the recent metaheuristic swarm intelligence optimization algorithms which
is proposed by Yang [18]. BA was inspired by the behavior of the micro-bats. A bat bi flies randomly with
velocity Vi at position Xi with a frequency Fi, varying wavelength �i ¼ ViFi and loudness Ai to search for a
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food/prey in a d dimensional search space. The BA starts with randomly generating the initial population of
bats. The values of the parameters of each bat bi are updated over the iterations according to Eqs. (1)–(3).

Vi t þ 1ð Þ ¼ Vi tð Þ þ Xi tð Þ � Gbestð ÞFi (1)

Xi t þ 1ð Þ ¼ Xi tð Þ þ Vi t þ 1ð Þ (2)

Fi ¼ Fmin þ ð Fmax � FminÞb (3)

where, Gbest is the current global best location solutionð Þ; Fi is the i
th bat frequency value, Fmin and Fmax are

the minimum and maximum frequency values respectively, b is a random number of a uniform distribution.
The bats perform a random walk procedure which is defined by Eq. (4) for exploring the space.

Xnew ¼ Xold þ EAt (4)

where, E is a random number in the range �1; 1½ �, At is the average loudness of all the bats at time t. It could
be stated that the BA is a balanced combination of the PSO and the intensive local search algorithms. The
balance between these two techniques is controlled by both loudness Að Þ and the pulse emission rate rð Þ
which are updated according to Eqs. (5) and (6).

Ai t þ 1ð Þ ¼ aAi tð Þ (5)

ri t þ 1ð Þ ¼ ri 0ð Þ 1� exp �ctð Þ½ � (6)

where, a and c are constants; a is analogous to the cooling factor in the simulated annealing (SA).

Mirjalili et al. [26] proposed the BBA to solve optimization problems in the binary search space. In the
BBA, the bat’s position is changed from one to zero or vice versa based on the probability of the bat’s
velocity according to Eqs. (7) and (8).

v V k
i t þ 1ð Þ� � ¼ 2

p
arctan

p
2
Vk
i t þ 1ð Þ

� �����
���� (7)

xki t þ 1ð Þ ¼ ðxki tð ÞÞ�1
if rand, v V k

i t þ 1ð Þ� �
xki tð Þ if rand � v Vk

i t þ 1ð Þ� ��
(8)

where xki tð Þ and Vk
i tð Þ is the position and velocity of i-th particle at iteration t in k-th dimension, and

ðxki tð ÞÞ�1 is the complement of xki tð Þ.

Figure 1: A sample representation of dominated non-dominated solutions and a Pareto front
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3 Literature Review

Researchers proposed a significant number of approaches to minimize the size of the test suite. The
majority of these approaches are based on greedy algorithms [27], while very few of them are based on
clustering algorithms [28] or utilize hybrid algorithms (e.g., neuro fuzzy techniques) [29]. Greedy based
approaches utilize one of the greedy algorithms to determine the reduced test suite based on the current
best strategy. Over each iteration, the greedy algorithm adds to the reduced test suite the test case that has
the highest greedy property, e.g., the highest statement coverage, which is a local optimal solution. It
stops when the desired percentage of coverage is reached. Greedy approaches were proved empirically to
be effective in solving the SO-TSR problem. On the other hand, clustering based approaches utilize one
or more of the clustering algorithms to group similar test cases together according to a predefined
similarity measure. Then a sampling mechanism is applied to select one or more test cases from each
cluster to be included in the reduced test suite; while the rest of the test cases are discarded. Recently,
heuristic algorithms where utilized to solve the single and multi-objective TSR [8,10–15,17]. According
to a survey study conducted by Khan et al. [8] the majority of the heuristic search based TSR approaches,
79% of them, are single-objective optimization. Some researchers showed empirically that some heuristic
algorithms are superior to greedy algorithms in solving each of the single and multi-objective TSR
problem [12,17]. The work of Yoo et al. [12] is considered as the first work that applies multi-objective
optimization for test suite minimization. The authors used the NSGAII algorithm and showed
experimentally its superiority over the greedy approaches. Geng et al. [10] and Gupta et al. [15] also
utilized the NSGA-II algorithm but with different objective drivers. The objectives of Geng et al. [10]
were the code coverage and test suite cost; while the objectives of Gupta et al. [15] were the code
coverage and mutation score. Wang et al. [13] proposed utilizing three types of weighted-based genetic
algorithms for minimizing the test suite of the product lines software. Where, the authors weighted
summed the different objective drivers to form a single objective fitness function that guides the GA
during the search for a Pareto front. Their experimental results showed that the Random-Weight GA
algorithm outperforms seven other popular multi-objective search algorithms including: NSGA-II,
strength Pareto evolutionary algorithms (SPEA) and speed-constrained multi-objective Particle Swarm
Optimization (SMPSO). Wei et al. [14] compared among six evolutionary multi-objective optimization
algorithms including NSGAII and several variants of the multi-objective decomposition-based
evolutionary algorithm (MOEA/D). Their experimental results showed the superiority of the NSGAII
over small programs, but over large programs (space) the MOEA/D was superior. They tried different
combinations of objective drivers including mutation score, code coverage and test suite cost. The
experiments showed that for the same statement coverage, using the “mutation score” as an objective
driver guided the evolutionary algorithms to the smallest test suite.

Difference from the previous work

The approach proposed in this paper is a heuristic search-based approach. We adapted one of the recent
heuristic algorithms BBA which proved its superiority over other evolutionary algorithms in different
contexts [20]. However, the BBA occasionally fails to discover the global best solution for some multi
modal functions; in addition, the BBA is used for solving single objective optimization problems. So, we
proposed modifications to the BBA and utilized it to minimize the test suite size without loss in the fault
detection quality. We used mutation testing to measure the quality of the reduced test suite, because
mutation testing has been studied by numerous researchers as a method to assess the quality of a test
suite [24,30–32]. Previous research proved empirically that mutation testing is more effective than code
coverage in evaluating and comparing test suites [24].
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4 Proposed Multi-Objective ABBA (MO-ABBA) for TSR

4.1 TSR Solution Encoding

Consider that each bat bi has a position vector Xi that represents a solution to the TSR problem, i.e., each
Xi represents a reduced test suite. Xi is encoded as a binary vector Xi = (xi1, xi2,…., xid), where, d is the size of
the original test suite (the total number of test cases), each bit xij corresponds to a test case tcj, the bit value is
equal to “1” or “0”. This means that tcj is included/excluded in the test suite, respectively.

4.2 Adapted Binary Bat Algorithm (ABBA)

Generally, the performance of any heuristic algorithm, including the BA, is affected by two crucial
competencies which are: 1) exploration and 2) exploitation. Exploration is the ability of an algorithm to
find promising solutions by searching various unknown regions, while exploitation leads the algorithm to
the best solution among the discovered ones. Exploration capability can get the algorithm away from a
local optimum it gets stuck in, while exploitation capability increases the convergence speed of an
algorithm. It is important to keep the balance between the global and local search, such that the global
search is amplified at the early iterations. While the local search is amplified at the late iterations so the
algorithm converges to the global optimum.

The update formula of the bat velocities, Vi t þ 1ð Þ Eq. (1), includes two components. The first component
is the previous velocity of the bat, Vi tð Þ, which is responsible for the global search (exploration). As, Vi tð Þ
directs the bat to keep its velocity and direction, thus it overflows the search space. While the second
component, (Xi tð Þ � GbestÞFi; is responsible for the local search (exploitation). As it directs all the bats to a
region near to the best-found global solution (Gbest). So, the following modifications were proposed to the
Vi t þ 1ð Þ formula: Firstly, multiplying the term Vi tð Þ by an inertia weight factor “w”, which is given by
Eq. (9). The value of w will decrease linearly over iterations. The inertia weight was recommended by a
number of previous studies that aimed at enhancing each of the BAand the PSO [24,33].

w ¼ wmax � wmax � wminð Þ iter

itermax

� 	
(9)

where wmax and wmin are pre-determined constants; iter is the current iteration number, itermax is the
maximum number of iterations.

The other suggested modification is to assume that each bat emits two frequencies instead of one before
the bat decides on its moving direction. The first frequency is directed towards the location of the Gbest,
while the second frequency is directed towards a randomly selected best solution discovered over the
previous iterations Rbest. Any of these previously discovered best solutions could be a candidate for a
global optimum solution. This way each bat benefits from the experiences of the other bats.
Consequently, Eq. (1) is amended as follows:

Vi t þ 1ð Þ ¼ w Vi tð Þð Þ þ Xi tð Þ � Gbestð ÞF1i þ Xi tð Þ � Rbestð Þ (10)

F1i ¼ Fi d ; F2i ¼ Fi 1� dð Þ (11)

d ¼ dminð Þ
1�

iter

itermax (12)

where Rbest is a randomly selected best solution other than theGbest, d increases non-linearly from dmin to
1 which increases the impact of the location of the Gbest over the iterations, so the bats converge to the Gbest.
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4.3 TSR Multi-Objective Fitness Function Formulation

In this paper the fitness function is composed of two objectives. The first objective aims at minimizing
the cost of the test suite; which is expressed in terms of the execution time as recommended by Yoo et al. [12].
While the second objective aims at selecting a reduced test suite that is capable of detecting the largest
number of faults. The fault detection capability of the reduced test suite is expressed in terms of the
mutation score. Wei et al. [14] found out that the mutation score is the most effective objective for
solving the TSR problem. The two objectives are defined using Eqs. (13)–(14).

Objective1 ¼
P

tcj j exec timeiP
RTSj j exec timei

(13)

Objective2 ¼ killed muj j
muj j (14)

where |tc | is the size of the original test suite, | RTS| is the size of the reduced test suite, exec timei is the
execution time of a test case “i”, muj j is the total number of mutants of the software under test and killed muj j is
the number of the killed mutants by the reduced test suite. The detection capability (number of killed mutants)
of the reduced test suite is the cumulative sum of the detection capability of each tci in the reduced test suite;
where each tci is represented using a binary vector of size n, n is the total number of mutants of a SUT. The
value of a bit number j in tci vector is set to equal “1”/”0” if tci kill/do not kill the mutant number j.

To formulate the fitness function, we used the weighted sum method which is simple and traditional
method for multi-objective optimization. It produces a Pareto-optimal set of solutions by changing the
weights among the objective functions. Yang [19] showed experimentally that the weighted sum method
for combining the multi-objectives into a single-objective is very efficient even with highly nonlinear
problems, complex constraints and diverse Pareto optimal sets. Moreover, Wang et al. [13] showed that
the random weighted-based GA (multi-objective GA based on weighted sum method) is superior to some
popular multi-objective algorithms, e.g., NSGAII and SPEA.

The fitness function used in this work is defined by Eqs. (15)–(17), the best solution is the one that
maximizes the fitness.

fitness ¼ weight1 � Objective1þ weight2�Objective2 (15)

weight2 ¼ 1þ weightinit � 1ð Þ itermax � iter

itermax

� 	n

(16)

weight1 ¼ 1� weight2 (17)

where, weight1; weight2 are the weights used to find the Pareto-optimal set of solutions, weightinit denotes
the initial value of weight2, iter is the current iteration number, and n is a modulation index. With the increase
in the iteration the value of weight2 increases from weightinit to 1, whereas weight1 decrease from
(1 − weightinit Þ to 0. The values of weight1 and weight2 determine the importance of each objective to the
fitness function. The different values of weight1; weight2 produce different non-dominated solutions with
sufficient diversity; so the Pareto front can be approximated correctly.

Algorithm 1 shows the basic steps of the multi-objective ABBA.
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5 Experiments and Results

5.1 Research Questions

The experiments were designed to answer the following research questions:

RQ1: Does the performance of the single-objective (SO-ABBA) surpasses the performance of the SO-
BBA and the SO-BPSO?

RQ2: Does the performance of the MO-ABBA surpasses the performance of the MO-BBA and the MO-
BPSO in solving the MO-TSR problem?

Algorithm 1: Multi-objective adapted binary bat algorithm (ABBA)

Define the objective functions f1 Xð Þ; . . . ; fk Xð Þ; X ¼ x1; x2; . . . ; xdð ÞT
for j = 1 to Z (Z is the number of points on Pareto fronts)

Generate K weights, weightk ≥ 0,
PK
k¼1

weightk ¼ 1

fitness ¼ PK
k¼1

weightkfk

Initialize the Bat population: position Xi ¼ rand 0 or 1ð Þ and velocities Vi i ¼ 1; 2; . . . ; Nð Þ
Specify the pulse frequencies Fi at Xi

Initialize loudness Ai and pulse emission rate ri

Find the current Gbest and Rbest

while( t � Maximum number of iterationsÞ
Adjust Fi and update Vi ( i ¼ 1; 2; . . . ; Nð Þ) using Eqs. (3) and (10)

Calculate v Við Þ using Eq. (7)

Update Xi using Eq. (8)

if ( rand > riÞ
Select a solution among the best solutions randomly and generate local solution around it.

end if
Generate a new solution by flying randomly

if ( rand < Ai fitness Xið Þ < fitness Gbestð Þ Þ
Accept the new solutions

Reduce Ai and Increase ri

end if

Rank the bats and find the current Gbest and Rbest

t ¼ t þ 1

end while

Record Gbest as a non-dominated solution

End for

Post-process results
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RQ3: How does the increase in the test suite size of the SUT and the number of mutants impact the
performance of the MO-ABBA?

5.2 Data Sets

To answer RQ1, we used twelve unimodal and multimodal benchmark functions. Tab. 1 lists these
functions along with their search boundaries (range). fn1 � fn6 are unimodal and fn7 � fn12 are
multimodal benchmark functions. The global minimum values of all benchmark functions used are 0. In
the experiments, 15 bits were used to represent each continuous variable in binary. Thus, the dimension
of generating a bit vector for a benchmark function fn was calculated by Eq. (18) as follows:

nb ¼ Dfn � 15 (18)

where, nb is the dimension of the bats/particles.

To answer RQ2 and RQ3, we used eight programs, out of which, two are C open-source programs and
their characteristics retrieved from a popular repository, Software-artifact Infrastructure Repository (SIR)
[34], which are: flex v1 and make v1. While the other six java programs are from an available dataset(1),
provided by Polo et al. [35]. The execution time of the test cases of these six programs is not available,
so we assumed that all the test cases have equal execution time equal to 1 unit time. The characteristics
of the eight programs are listed in Tab. 2, which are the line of code (LOC), the test suite size |tc|,
number of mutants |mu|, and the execution time of the original test suite (Texec).

Table 1: Benchmark functions

Function Range Function Range

fn1 xð Þ ¼ PD
i¼1

x2i
[−100,
100] fn7 xð Þ ¼ PD

i¼1
ix4i þ random 0; 1½ Þ [-1.28,1.28]

fn2 xð Þ ¼ PD
i¼1

x2i
�� ��þ QD

i¼1
x2i
�� �� [−10, 10]

fn8 xð Þ ¼ PD
i¼1

x2i � 10 cos 2pxið Þ þ 10
� � [-5.12,5.12]

fn3 xð Þ ¼ PD
i¼1

ix2i
[−10, 10]

fn9 xð Þ ¼ 1

4000

XD
i¼1

x2i þ
YD
i¼1

cos
xiffiffi
i

p
� 	

þ 1
[-600,600]

fn4 xð Þ ¼ PD
i¼1

x2i � ð106Þ i�1ð Þ= D�1ð Þ [−100,
100] fn10 xð Þ ¼ �20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

D

XD
i¼1

x2i

s !
� exp

1

D

XD
i¼1

cos 2pxi

 !
[-32,32]

fn5 xð Þ ¼ PD
i¼1

xi þ 0:5ð Þ2 [−100,
100] fn11 xð Þ ¼ PD�1

i¼1
xi sin xið Þ þ 0:1 xij j [-10,10]

fn6 xð Þ ¼ PD�1

i¼1
½100 xiþ1 � x2i

� �2 þ xi � 1ð Þ2� [−5, 10]
fn12 xð Þ ¼ �418:98�DþPD

i¼1
�xi sin

ffiffiffiffiffiffi
xij jp� �� � [-500,500]

Table 2: Experimental software under test (SUT)

Flex_V1 Make_V1 MBisectOk MBubCorrect MFindOk MFourBall MMidOK MTringle

LOC 15297 27879 31 54 79 47 59 61

|mu| 19 17 44 70 179 168 138 239

|tc| 567 1043 25 256 135 96 125 216

Texec 170.38 12070.23 25 256 135 96 125 216

(1)
http://www.inf-cr.uclm.es/www/mpolo/stvr
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5.3 Parameter Setting

We experimented with the most recommended values for the parameters in the literature [36]. Tab. 3 lists
the parameter values that achieved the best performance.

5.4 Performance Metrics

Two metrics were used to assess the performance of the heuristic algorithms in general which are the
fitness Mean and standard deviation (SD), defined by Eqs. (19) and (20).

Mean ¼
XN
i¼1

fi

 !
=N (19)

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 ðfi � meanÞ2
N

s
(20)

where, N is the number of runs, fi is the fitness of the best solution discovered during the run number i.

As the evolutionary algorithms are stochastic, for each experiment, 10 independent runs were
performed; then the Mean and SD are calculated. Larger mean values indicate better solutions. While the
smaller the value of the SD, the more robust is the algorithm; as small SD values indicate that the
algorithm can find acceptable solutions in the different runs, with small discrepancy.

Extra three specific metrics were used which are: (i) Test suite size reduction rate (TSRR), (ii)
Execution time reduction rate (ETR) and (iii) Fault detection capability rate (FDR); They are calculated
using Eqs. (21)–(23)

TSRR ¼ tcj j � RTSj j
tcj j (21)

ETR ¼
P

tcj j exec timei �
P

RTSj j exec timeiP
tcj j exec timei

(22)

FDR ¼ Killed muj j
muj j (23)

The higher the values of the TSRR, ETR and FDR, the better the performance of the search algorithm.

Table 3: Parameter settings for ABBA, BBA, and BPSO

Parameter ABBA BBA BPSO Parameter ABBA BBA BPSO

Pop. size 40 40 40 a ; c 0.9, 0.9 0.9, 0.9 –

Max iteration 100 100 100 wmax, wmin 0.8, 0.4 – –

Fmin, Fmax 0,2 0,2 – n 2 – –

A, r 0.9, 0.1 0.9, 0.1 – dinit 0.6 – –

E [−1, 1] – – C1;C2 – – 1.5, 1.2

Max velocity – – 6
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6 Results

Answer to RQ1:

Tab. 4 lists the mean and SD of the optimal solutions discovered for each function over the ten runs, also
lists the mean and SD of the number of iterations executed to reach the corresponding optimal solutions; the
best results are pointed out in bold style. The maximum number of iterations was set to equal 1000 across all
the experiments; however, the best solutions were achieved earlier than the predetermined maximum number
of iterations. It should be noted that, for any of the previously mentioned benchmark functions, the best
solution is the one that has the smallest mean value (minimization problem). Also, the smaller the mean
value of the executed number of iterations, the faster the convergence speed of the heuristic algorithm.

As could be observed from Tab. 4 that the performance of the SO-ABBA algorithm is superior to the
SO-BBA over all the unimodal and multimodal benchmark functions; as SO-ABBA could discover better
solutions than the ones discovered by the SO-BBA, in terms of the mean values of the best solutions. In
addition to, the SD values of the best solutions in case of using the SO-ABBA are smaller than when
using SO-BBA over all the functions, which indicates that the SO-ABBA is more robust than the SO-
BBA. Small SD values of the optimal solutions discovered by the SO-ABBA prove that the SO-ABBA is
efficient in finding the best solutions without large variance among the different runs. When comparing
the performance of the SO-ABBA to the SO-BPSO, it was found that the SO-ABBA was capable of
discovering better solutions than the SO-BPSO for fn3, fn4, fn6, fn7, fn9, fn12 functions. In addition, the
SD values of the best solutions in the case of using the SO-ABBA are smaller than when using the SO-
BPSO. On the other hand, both the SO-ABBA and the SO-BPSO could discover the same best solutions
for fn1, fn2, fn5, fn8, fn10, fn11. As could be observed from the mean values of the number of iterations
executed by each of the three algorithms to discover the optimum solutions that, the SO-ABBA could
converge to the best solutions much faster than each of the SO-BBA and the SO-BPSO.

Table 4: Performance comparison among SO-ABBA, SO-BBA, SO-PSO over benchmark functions

fn Optimal solution (Mean ± Std. dev) Convergence speed (# of Iterations Mean ±
Std. dev)

SO-ABBA SO-BBA SO-BPSO SO-ABBA SO-BBA SO-BPSO

fn1 0 ± 0 1 ± 0.81 0 ± 0 34 ± 7.14 339 ± 320.73 502 ± 25.36

fn2 0 ± 0 1.5 ± 1.26 0 ± 0 32 ± 8.93 384 ± 244.02 615 ± 22.94

fn3 0 ± 0 12.4 ± 13.13 7 ± 13.32 59 ± 31.22 470 ± 295.46 622 ± 19.91

fn4 0 ± 0 72.23 ± 132.40 78.44 ± 121.06 97 ± 30.72 308 ± 302.75 667 ± 27.84

fn5 0 ± 0 1.1 ± 132.40 0 ± 0 33 ± 53.30 620 ± 191.12 365 ± 21.19

fn6 0 ± 0 4.675e2 ± 109.29 0.1 ± 0.32 98 ± 53.16 747 ± 201.36 608 ± 25.04

fn7 0.0002 ± 0.0001 16.20 ± 24.02 4.100 ± 6.54 180 ± 269.58 468 ± 274.45 656 ± 58.99

fn8 0 ± 0 1.3 ± 1.25 0 ± 0 29 ± 10.46 488 ± 342.19 611 ± 21.59

fn9 0 ± 0 0.011 ± 0.01 0.003 ± 0.01 60 ± 38.24 402 ± 177.85 624 ± 23.41

fn10 8.8818e-16 ± 0 0.38 ± 0.21 8.8818e-16 ± 0 30 ± 10.23 409 ± 292.67 611 ± 29.13

fn11 0 ± 0 1.03 ± 0.82 0 ± 0 28 ± 13.65 424 ± 215.54 600 ± 220.89

fn12 31360.61 ± 0 31361.28 ± 0.66 31360.69 ± 0. 66 30 ± 14.01 244 ± 220.89 588 ± 12.51
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Answer to RQ2:

To answer RQ2 we conducted a set of experiments over the previously mentioned 8 programs. The
results listed in the paper are the mean and SD of 10 independent runs over each program. The maximum
number of iterations was set to equal 100 in all the experiments. Tab. 5 lists the generated values of
weight1 and weight2 which were used to calculate 10 non-dominated solutions (NDS) on the Pareto
surface. While Tab. 6 lists the mean and SD values of each of the fitness (F) and convergence speed of
the discovered NDS. The convergence speed is measured in terms of the number of iterations executed
by each algorithm to discover the best solution (#i). To simplify the visualization of the results, only three
NDS (nu. 1, 5, 10) were listed in the table. Tab. 7 lists the FDR, TSRR and ETR of the three selected NDS.

As could be observed from Tab. 6, that the MO-ABBA algorithm surpasses both of the MO-BPSO and
MO-BBA in terms of the mean fitness values of the discovered NDS, across the 8 programs. Moreover, the
fitness standard deviation values of the NDS discovered by the MO-ABBA are very small; most of them are
equal to zero or approaches zero, which indicates the stability of the MO-ABBA. E.g., the fitness mean and
SD values of the NDS#5 discovered by the MO-ABBA, MO-BBA and MO-BPSO are as follows: Flex_V1

Table 5: Weights used in experiments to generate 10 NDS

NDS 1 2 3 4 5 6 7 8 9 10

Weight1 0.6 0.676 0.744 0.804 0.856 0.9 0.936 0.964 0.984 0.9960

Weight2 0.4 0.324 0.256 0.196 0.144 0.1 0.064 0.036 0.016 0.004

Table 6: Comparison among the fitness values (F) and the convergence speed (#i) of three NDS discovered
by the MO-ABBA, MO-BBA AND MO-BPSO

NDS
#

MEAN ± STD. DEV

Flex_V1 Make_V1 MBisectOk MBubCorrect MFindOk MFourBall MMidOK MTringle

1 ABBA F 2.93 ± 0.06 4.06 ± 0.08 10.57 ± 0 8.34 ± 1.46 54.60 ± 0 38.62 ± 0.02 8.34 ± 1.46 11.53 ± 3.25

#i 95.5 ± 4.95 98.5 ± 2.12 15.33 ± 8.09 91.60 ± 6.28 68.50 ± 12.25 60.20 ± 23.06 69.70 ± 19.30 94.22 ± 5.95

BBA F 2.03 ± 0.05 2.81 ± 0.03 10.52 ± 0.06 2.72 ± 0.24 4.34 ± 0.97 4.34 ± 0.97 4.69 ± 1.08 2.99 ± 0.33

#i 94.5 ± 1.77 99.5 ± 0.35 28.30 ± 17.72 91.50 ± 8.20 92.90 ± 8.41 88.50 ± 9.31 88.80 ± 9.19 95.00 ± 4.03

BPSO F 1.92 ± 0.05 2.68 ± 0.06 10.57 ± 0.01 2.71 ± 0.19 4.69 ± 1.04 12.59 ± 4.28 5.84 ± 1.76 2.94 ± 0.38

#i 97.5 ± 1.1 98.5 ± 0.35 67.60 ± 22.08 98.40 ± 1.58 98.70 ± 1.06 98.60 ± 1.96 99.50 ± 0.85 99.40 ± 0.97

5 ABBA F 1.53 ± 0.02 2.12 ± 0.0 4.42 ± 0 3.70 ± 0.61 20.13 ± 0.35 14.14 ± 0.02 3.70 ± 0.61 3.82 ± 0.72

#i 96.5 ± 3.54 97.5 ± 0.71 20.44 ± 9.88 92.70 ± 7.63 69.20 ± 11.13 55.70 ± 23.31 67.40 ± 21.57 93.78 ± 5.80

BBA F 1.25 ± 0.00 1.76 ± 0.0 4.31 ± 0.13 1.61 ± 0.06 2.13 ± 0.24 3.84 ± 3.64 2.34 ± 0.25 1.58 ± 0.07

#i 98.5 ± 1.06 98 ± 1.41 31.90 ± 22.20 92.90 ± 7.65 91.50 ± 6.11 79.80 ± 12.67 89.30 ± 7.15 92.50 ± 9.92

BPSO F 1.23 ± 0.01 1.66 ± 0.02 4.41 ± 0.01 1.61 ± 0.07 2.45 ± 0.33 3.25 ± 0.64 2.48 ± 0.23 1.58 ± 0.09

#i 100 ± 0 100 ± 0 81.80 ± 9.11 99.80 ± 0.42 99.00 ± 0.94 99.00 ± 1.56 99.50 ± 1.08 99.10 ± 0.74

10 ABBA F 0.86 ± 0.0 1.03 ± 0.0 1.05 ± 0 1.08 ± 0.02 1.54 ± 0 1.08 ± 0.01 1.08 ± 0.02 1.04 ± 0

#i 92 ± 5.66 100 ± 0 42.22 ± 30.97 92.50 ± 6.08 64.30 ± 13.65 54.30 ± 21.68 76.50 ± 14.16 88.56 ± 11.28

BBA F 0.85 ± 0.0 1.02 ± 0.0 1.04 ± 0.01 1.02 ± 0 1.03 ± 0.01 1.04 ± 0.01 1.03 ± 0.01 1.01 ± 0

#i 98 ± 0.7 99 ± 0.71 21.90 ± 18.78 89.40 ± 8.37 90.50 ± 6.52 83.40 ± 12.03 90.30 ± 9.32 91.60 ± 7.88

BPSO F 0.85 ± 0.0 1.02 ± 0.0 1.05 ± 0.01 1.02 ± 0 1.03 ± 0.01 1.05 ± 0.01 1.03 ± 0.01 1.01 ± 0

#i 99.5 ± 0.35 99.5 ± 0.35 71.90 ± 16.63 99.40 ± 0.84 98.40 ± 2.22 99.50 ± 0.71 99.40 ± 0.70 99.20 ± 0.92
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(1.53 ± 0.02, 1.25 ± 0.00, 1.23 ± 0.01), Make_V1 (2.12 ± 0.0, 1.76 ± 0.0, 1.66 ± 0.02), MBisectOk (4.42 ± 0,
4.31 ± 0.13, 4.41 ± 0.01), MBubCorrect (3.70 ± 0.61, 1.61 ± 0.06, 1.61 ± 0.07), MFindOk (20.13 ± 0.35, 2.13
± 0.24, 2.45 ± 0.33), MFourBall (14.14 ± 0.02, 3.84 ± 3.64, 3.25 ± 0.64), MMidOK (3.70 ± 0.61, 2.34 ± 0.25,
2.48 ± 0.23), MTringle (3.82 ± 0.72, 1.58 ± 0.07, 1.58 ± 0.09).

In terms of the convergence speed, the MO-ABBAwas able to converge to the best solutions faster than
each of the MO-BBA and the MO-BPSO across all the programs except Flex_V1, NDS 1(#i = 95.5 ±
4.95 ABBA, 94.5 ± 1.77 BBA, 97.5 ± 1.1 BPSO), Make_V1(NDS 10) (#i = 100 ± 0 ABBA, 99 ±
0.71 BBA, 99.5 ± 0.35 BPSO), MBisectOk (NDS 10) (#i = 42.22 ± 30.97 ABBA, 21.90 ± 18.78 BBA,
71.90 ± 16.63 BPSO) and MbubCorrect (NDS 10) (#i = 92.5 ± 6.08 ABBA, 89.40 ± 8.37 BBA, 99.4 ±
10.84 BPSO); where, the MO-BBA converged faster than the MO-ABBA. Nevertheless, the MO-ABBA
converged to better solutions than the ones discovered by the MO-BBA. So It could be stated that the
MO-BBA was prematurely converged in these cases. Furthermore, the MO-BPSO was occasionally able
to discover solutions close to the ones discovered by the MO-ABBA, e.g., MBisectOk NDS 1 (F = 10.57
± 0 ABBA, 10.57 ± 0.01 BPSO) and MBisectOk NDS 10 (F = 1.05 ± 0 ABBA, 1.05 ± 0.01 BPSO). But
the MO-BPSO needed a greater number of iterations than the MO-ABBA to converge to these solutions
(MBisectOk NDS 1 #i = 15.33 ± 8.09 ABBA, 67.60 ± 22.08 BPSO ; MBisectOk NDS 10 #i = 42.22 ±
30.97ABBA, 71.90 ± 16.63 BPSO).

As could be observed from Tab. 7 that some of the solutions discovered by the three algorithms have the
same FDR values, but the solutions discovered by the MO-ABBA have the highest TSRR and ETR values
(e.g., Flex_V1 NDS#1 TSRR = (82.19 ± 2.12 ABBA, 72.40 ± 4.60 BBA, 70.46 ± 7.42 BPSO) ; ETR = (83.50
± 0.65 ABBA, 73.78 ± 1.53 BBA, 71.71 ± 1.88 BPSO), Make NDS#1 TSRR = (68.41 ± 1.77 ABBA, 60.55 ±
0.35 BBA, 59.16 ± 0.71BPSO); ETR = (80.77 ± 69.0 ABBA, 81.89 ± 34.27 BBA, 81.98 ± 46.38 BPSO) and
MFindOk NDS#1 TSRR = (99.3 ± 0 ABBA, 88.7 ± 3.80 BBA, 89.6 ± 1.78 BPSO); ETR = (99.3 ± 0 ABBA,
88.7 ± 3.80 BBA, 89.6 ± 1.78 BPSO)). Which means that for the same fault detection capability rate the MO-
ABBA could select from a test suite a subset of test cases with smaller size and faster execution time (less
expensive) than the subsets selected by each of the MO-BBA and MO-BPSO. While, some of the solutions
discovered by the MO-ABBA are more cost effective (in terms of the TSRR and the ETR values) but with
less fault detection capabilities (e.g., MFourBall NDS #1 FDR = (37.4 ± 4.02 ABBA, 83.4 ± 20.99 BBA,
61.7 ± 15.33BPSO); TSRR = (99.0 ± 0 ABBA, 91.8 ± 2.42 BBA, 96.4 ± 1.49 BPSO); ETR = (99.0 ±
0 ABBA, 91.8 ± 2.42 BBA,96.4 ± 1.49 BPSO) ; MFourBall NDS #2 FDR = (37.1 ± 4.06 ABBA, 97.6 ±
40.20 BBA, 85.7 ± 25.01 BPSO); TSRR = (99.0 ± 0 ABBA, 92.5 ± 3.05 BBA, 93.8 ± 1.94 BPSO);
ETR = (99.0 ± 0 ABBA, 92.5 ± 3.05 BBA,93.8 ± 1.94 BPSO) ; MMidOk NDS #1; MTringle NDS #1 and
MTringle NDS #2. So, the selection of the best algorithm depends on the testers’ targets and testing
budgets. Fig. 2 shows sample convergence curves of the three algorithms over the programs. As could be
observed that the MO-ABBA converge faster and to better solutions than the MO-BBA and the MO-BPSO,
although the parameters settings of both of the MO-ABBA and the MO-BBA are the same.

Table 7: Comparison among three NDS in terms of fault detection capability rate (FDR), the reduction
percentage of test suite (TSRR) and the execution time reduction (ETR)

NDS MEAN ± STD. DEV

Flex Make MBisectOk MBubCorrect MFindOk MFourBall MMidOK MTringle

1 ABBA FDR 84.21 ± 0 100 ± 0 95.45 ± 0 96.3 ± 0.32 99.4 ± 0 37.4 ± 4.02 41.6 ± 11.06 73.7 ± 30.08

TSRR 82.19 ± 2.12 68.41 ± 1.77 96.0 ± 0 94.6 ± 2.70 99.3 ± 0 99.0 ± 0 99.1 ± 0.31 96.1 ± 2.32

ETR 83.50 ± 0.65 80.77 ± 69.00 96.0 ± 0 94.6 ± 2.70 99.3 ± 0 99.0 ± 0 99.1 ± 0.31 96.1 ± 2.32

BBA FDR 84.21 ± 0 100 ± 0 86.4 ± 4.09 97.1 ± 0 99.4 ± 0 83.4 ± 20.99 94.7 ± 8.62 87.7 ± 16.29

TSRP 72.40 ± 4.60 60.55 ± 0.35 96.0 ± 0 81.0 ± 5.19 88.7 ± 3.80 91.8 ± 2.42 89.9 ± 2.41 83.6 ± 3.66

ETR 73.78 ± 1.53 81.89 ± 34.27 96.0 ± 0 81.0 ± 5.19 88.7 ± 3.80 91.8 ± 2.42 89.9 ± 2.41 83.6 ± 3.66

(Continued)
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Answer to RQ3:

As could be observed from the set of experiments over the benchmark functions that the performance of
the SO-ABBAwas not affected by the functions’ ranges or types. For example, the SO-ABBAwas superior
to SO-BBA and SO-BPSO over unimodal functions fn2 and fn4, but fn2 has a small range, while fn4 has a
wide range. SO-ABBA has the same superior performance over the multi-model functions fn9 and fn11:
Moreover, the performance of the MO-ABBA was superior over the 8 programs with different test suites
sizes (ranges from 25 to 1034), different execution times (ranges from 170.38 to 12070.23) and different
numbers of mutants (ranges from 17 to 239). From these observations we could conclude that the ABBA
is scalable.

Table 7 (continued).

NDS MEAN ± STD. DEV

Flex Make MBisectOk MBubCorrect MFindOk MFourBall MMidOK MTringle

BPSO FDR 84.21 ± 0 100 ± 0 95.0 ± 0.6 97.1 ± 0 99.4 ± 0 61.7 ± 15.33 94.4 ± 6.7 87.9 ± 8.31

TSRP 70.46 ± 7.42 59.16 ± 0.71 96.0 ± 0 80.9 ± 4.14 89.6 ± 1.78 96.4 ± 1.49 91.9 ± 1.52 83.1 ± 3.02

ETR 71.71 ± 1.88 81.98 ± 46.38 96.0 ± 0 80.9 ± 4.14 89.6 ± 1.78 96.4 ± 1.49 91.9 ± 1.52 83.1 ± 3.02

5 ABBA FDR 84.21 ± 0 100 ± 0 95.45 ± 0 96.9 ± 0.42 79.9 ± 73.58 37.1 ± 4.06 41.2 ± 5.47 75.0 ± 29.21

TSRP 81.04 ± 2.47 69.32 ± 3.53 96.0 ± 0 94.6 ± 2.34 99.3 ± 0 99.0 ± 0 99.2 ± 0 95.2 ± 2.31

ETR 82.14 ± 0.79 88.28 ± 17.66 96.0 ± 0 94.6 ± 2.34 99.3 ± 0 99.0 ± 0 99.2 ± 0 95.2 ± 2.31

BBA FDR 84.21 ± 0 100 ± 0 83.2 ± 6.35 97.1 ± 0 99.4 ± 0 97.6 ± 40.20 95.8 ± 0.32 97.7 ± 1.26

TSRP 72.22 ± 1.77 60.93 ± 2.47 96.0 ± 0 81.0 ± 3.68 88.4 ± 2.90 92.5 ± 3.05 90.3 ± 2.33 80.5 ± 3.81

ETR 73.04 ± 0.50 82.20 ± 23.57 96.0 ± 0 81.0 ± 3.68 88.4 ± 2.90 92.5 ± 3.05 90.3 ± 2.33 80.5 ± 3.81

BPSO FDR 84.21 ± 0 100 ± 0 95.0 ± 0.6 97.1 ± 0 99.4 ± 0 85.7 ± 25.01 94.7 ± 8.88 96.7 ± 2.35

TSRP 70.99 ± 3.89 58.15 ± 3.18 96.0 ± 0 80.5 ± 4.27 90.6 ± 2.71 93.8 ± 1.94 91.3 ± 1.59 80.6 ± 4.89

ETR 71.72 ± 1.24 80.44 ± 5.72 96.0 ± 0 80.5 ± 4.27 90.6 ± 2.71 93.8 ± 1.94 91.3 ± 1.59 80.6 ± 4.89

10 ABBA FDR 84.21 ± 0 100 ± 0 95.0 ± 1.05 97.1 ± 0 99.4 ± 0 99.3 ± 0.42 99.1 ± 1.06 100 ± 0

TSRP 82.1 ± 1.06 67.79 ± 4.24 95.6 ± 0.3 94.9 ± 3.38 99.3 ± 0 95.5 ± 0.42 96.0 ± 0.67 90.5 ± 1.51

ETR 83.31 ± 0.24 88.28 ± 17.65 95.6 ± 0.3 94.9 ± 3.38 99.3 ± 0 95.5 ± 0.42 96.0 ± 0.67 90.5 ± 1.51

BBA FDR 84.21 ± 0 100 ± 0 99.5 ± 0.6 97.1 ± 0 99.4 ± 0 99.9 ± 0.6 100.0 ± 0 100 ± 0.0

TSRP 73.02 ± 2.12 61.55 ± 4.24 89.6 ± 0.8 81.5 ± 4.43 87.9 ± 3.17 90.5 ± 1.52 89.0 ± 3.09 78.7 ± 4.16

ETR 74.37 ± 0.23 81.90 ± 5.60 89.6 ± 0.8 81.5 ± 4.43 87.9 ± 3.17 90.5 ± 1.52 89.0 ± 3.09 78.7 ± 4.16

BPSO FDR 84.21 ± 0 100 ± 0 97.3 ± 0.68 97.1 ± 0 99.4 ± 0 99.8 ± 0.97 99.9 ± 0.32 100 ± 0

TSRP 71.34 ± 2.47 57.05 ± 4.24 93.6 ± 0.8 80.8 ± 4.87 89.3 ± 2.06 91.9 ± 1.93 89.4 ± 2.15 75 ± 4.25

ETR 72.37 ± 0.91 80.44 ± 5.72 93.6 ± 0.8 80.8 ± 4.87 89.3 ± 2.06 91.9 ± 1.93 89.4 ± 2.15 75 ± 4.25
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Figure 2: Sample convergence curves of the MO-ABBA, MO-BBA and MO-BPSO
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7 Conclusion and Future Work

This paper proposed solving the multi-objective test suite reduction problem using the Binary Bat
algorithm, which is reported in the literature as one of the effective swarm intelligence based algorithms.
The BBA algorithm was adapted for better exploration capabilities and consequently better performance.
The TSR problem was formulated as a multi-objective optimization problem. The adapted binary bat
algorithm was utilized to search for the non-dominated solutions that keep the balance between the cost
of the reduced test suites and their fault detection capabilities. The effectiveness of the adapted binary bat
algorithm was assessed over eight programs of different test suites sizes, in addition to a set of unimodal
and multi modal benchmark functions. The experimental results showed that the performance of the
proposed MO-ABBA is superior to each of the MO-BBA and MO-BPSO in terms of the previously
defined five metrics. Moreover, The MO-ABBA converged to the best solutions faster than each of the
MO-BBA and the MO-BPSO. As a further extension for this work, different weighting mechanisms
could be tried for the weighted sum multi-objective optimization. In addition, the fitness function could
be redefined to include more objectives such as branch coverage. Furthermore, different inertia formulas
[24] could be experimented with.
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