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Abstract--  In this work we use Lubrication type method, based 

on the possibility of the separation of longitudinal and 
transversal length scales to simplify the analysis of thin film 

dynamics. We study the dynamics of evaporating thin liquid 

films on an inclined plane, where the effect of van der Waal 

forces is significant. The numerical solution of the evolution 

equation is carried out using the method of orthogonal 
collocation and is used for the study of the instabilities of 

evaporating thin film to identify conditions for efficient 

operation. For symmetric cases where the plane is horizontal, a 

two spline collocation second order formulation method that 

makes use of the symmetry seems most appropriate. For inclined 
plane, a spline collocation first order formulation method is most 

efficient. 

Index Term--  Thin film flow, lubrication theory , 

orthogonal collocation 

I.    INTRODUCTION 

The study of supported thin film on plane and inclined 

surfaces phenomena has been motivated both by their 

scientific and industrial applications. Thin films are of great 

importance in industrial applications such as cooling, 

lubrication, cleaning, painting, spraying, adhesion, and 

protective coatings among others. Some of these techniques 

are linked to the rapidly expanding fields of micro-fluidics and 

nanotechnologies. In some of these thin film applications, it is 

desirable to maintain a smooth film surface, and it is therefore 

crucial that the film remains stable over time. However, it is 

known that liquid films can start to flow, e.g. under the 

influence of intermolecular forces, with the result that the 

uniform film sometimes ruptures into a pattern of droplets or 

holes. 

  The primary factors affecting the interfacial dynamics of 

thick films are: mean flow (destabilizing), surface tension 

(stabilizing), and thermocapillary (destabilizing). While for 

thin films, long range intermolecular forces owing to van der 

Waals interactions significantly affect the stability of the film, 

these do not affect the thick films.      

The mathematical modeling of the hydrodynamics of thin film 

leads to a system of equations based on Navier-Stokes, energy 

and continuity equations. However simplifications are 

possible. If the ratio of the mean film thickness to the 

wavelength of the surface waves (epsilon) is small, the system 

equations can be expanded in terms of epsilon leading to a 

single partial differential equation giving the dynamics of the 

liquid film thickness. This approximation is known as long 

wave approximation or lubrication theory. 

Burelbach et al. [1] studied the stability of evaporating films 

on a horizontal plane. They considered the effect of vapour 

recoil, , surface tension, thermocapillarity and van der Waals 

forces. Joo et al. [2] studied the same problem but on an 

inclined plane where gravitational forces are important. They 

neglected the effect of van der Waal forces. Ali, et.al., [3] 

studied the stability and rupture of nano-liquid films flowing 

down an inclined plate and they accounted for gravity and van 

der Waals forces. 

 Miladinova and Lebon [4] studied the same problem as in [2] 

and introduced the effect of nonuniform heating. 

References [1,2] used the finite difference method to solve the 

governing equations. Momoniat et al [6] developed a Crank-

Nicholson implicit-explicit scheme for solving the generalized 

lubrication equation. Cueto-Felgueroso et al [7] presented a 

rational spectral method for non-linear fourth order equations. 

In this paper we solve the governing equations using different 

schemes based on the collocation method.  

 

II. PROBLEM  FORMULATION 

 We consider a two-dimensional Newtonian liquid of a 

constant density ρ and viscosity μ, driven by gravity and van 

der Waals force down an isothermal plane inclined at an angle 

Ө, as shown in Fig. 1. The plate has a constant temperature TH 

and the temperature TF of the liquid on the free surface is 

controlled by losses to the passive gas above. The liquid 

evaporate at the free surface. The thermocapillary effects 

occur due to the dependence of surface tension  on 

temperature. A two  dimensional Cartesian coordinate is used 

to describe the problem with x directed down the plate and z 

normal to the plate as shown in Fig. 1..  The flow is described 

by a two-dimensional Navier–Stokes equation coupled with 

continuity equation and associated boundary conditions. The 

body force term in the Navier–Stokes equation was modified 

by the inclusion of excess intermolecular interactions between 
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fluid film and the solid surface owing to long range van der 

Waals force, in addition to gravity force. The lubrication type 

approximation is used to describe the system in terms of the 

following dimensionless dependent variables: 

, ,x z t        

where   is the small wave number defined as the ratio of the 

mean thickness of the layer to a characteristics length in the x-

direction which typically is proportional to the disturbance 

wavelength.   The evolution equation for the film thickness h 

is derived [1,2]to be: 
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         (1) 

Equation (1) is fourth-order partial differential equation and it 

contains several parameters which represent the effects of all 

considered phenomena on the dynamics of the film thickness.   

The parameter E is the evaporation number and all terms 

proportional to E describe the mass loss due to evaporation. G 

is gravity number and it appears on the third term and the 

seventh term: the third term describes the wave propagation 

and steepening while the other term represents the hydrostatic 

effect. The G appears also on the fourth term which represent 

the mass shear flow due to gravity. The fifth term represents 

the thermocapilarity effect written in term of  the Marangoni 

number M,  K and Prandtel number P.  K is  a measure 

number for the degree of non-equilibrium on the free surface  

(K=0 represents the case of a constant free surface 

temperature while large K gives the zero-evaporation limit). 

The vapor recoil effects appears on the sixth term of the 

evolution equation. The eighth term represents the effect of 

the surface tension. The last term written in term of the 

parameter A represent the molecular van der Waal forces 

effect.  

The dynamics of thin falling film of a Newtonian liquid on an 

inclined heated  surface is represented by a nonlinear fourth 

order partial differential equation defined (1) describe the 

dynamic behavior of a nonisothermal thin film subjected to 

interfacial surface tension and intermolecular van der Waals 

forces.    

Equation (1) is defined with periodic boundary conditions 

over a non-dimensional wave length (2π/k): 

0 2 /

2
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i i

i i

k

h h
i

k
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
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 
 

    
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                    (2) 

A periodic initial condition is used 

)sin(1),0(  kh 
             

1
                                      

        (3)
 

The only force which increases as the film gets thinner is the 

van der Waal Force. The linear stability analysis gives us an 

expression for the growth rate. For stability the growth rate 

should be negative. When the growth rate is zero, we obtain a 

cutoff wavenumber which indicates neutral stability. For 0<k< 

kc , we have instability, i.e., small disturbance grows. For 

maximum growth rate; we get km; the maximizing 

wavenumber (km<kc) 

2/cm kk                                                                           

        (4) 

III. NUMERICAL METHOD  

Dynamic models for thin liquid falling films require suitable 

numerical procedures to solve the partial differential equation 

set that describes the film thickness dynamics. The orthogonal 

collocation method has been applied for different problems in 

several chemical engineering applications [8-10]. In this 

method, a trial function is taken as a series of orthogonal 

polynomials whose roots are used as collocation points (thus 

avoiding an arbitrary choice by the user) and the dependent 

variables become the solution values at these collocation 

points. The accuracy of the method increases rapidly with the 

order of the trial function but a first-order approximation 

usually gives good results. In addition, the method has an 

additional advantage of reducing by 50% the number of 

unknown variables if solution of the model is symmetric. In 

particular, it is shown that for an nth-order differential 

equation in one space dimension with two-point derivative 

boundary conditions, an ideal choice of interior collocation 

points is the set of zeros of a Jacobi polynomial.  The Jacobi 

polynomials )(),( xPn


 are defined such that they satisfy the 

orthogonality conditions [9,10] 

 

 

1

0

),(),( )(0)()()( mndxxPxPxw mn



     (5) 
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and 

 

 

1

0

),(),( )(0)()()( mnCdxxPxPxw nmn 

    (6) where w(x) is the 

weighting function for the orthogonality conditions.  For 

Jacobi polynomials, 

 
 xxxw )1()(    , 1,   

         (7) 

Thus    
),( 

nP  (x) is the orthogonal polynomial of degree n 

and  ,  are the indices of the weighting function. Cn  is a 

constant. 

In the following we present the formulation of the problem in 

term of the orthogonal collocation method.  Consider 

     
2
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


                                                                                                                

  (8) 

Equation (1) can be written in term of this new variable as 

follows: 
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 Which can be written in the following form: 
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      (10) 

The standard orthogonal collocation method is applied by 

evaluating the differential equations at N interior collocation 

points and setting this residual to zero The spatial 

discretization of (10)  by the orthogonal collocation method at 

the collocation points results in a system of N ordinary 

differential equations over time.The discretization of the 

boundary conditions (2) gives us additional 4 equations. On 

the other hand we have only N+2 unknowns(hi, 

i=1,2…..,N+2). Thus to get a consistent system of equations, 

we drop the equations at  N ,1  such that we have N+2 

equations in N+2 unknowns. 

Equation (10) can also be written as a system of first order 

differential equations such that 

http://faculty.washington.edu/finlayso/ebook/bvp/OC/OC_unsym.htm
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Equation (11.a) in terms of collocation matrices takes the form  

1
'
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1
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N
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      (12) 

A  is the weight matrix of first derivative for a boundary 

point at x=0. 

Subroutines for the calculations of derivative weight matrices 

for orthogonal collocation up to second order are available in 

reference [6]. These are extended to any order in reference [7]. 

Equation (11b) can be written as follows 

1, 1, 1 1 1, 1 2,

1

, 2,3....., 1
N

i j j i N N i

j

A u A u u i N   



   

     (13) 

A  is the matrix of first derivatives for the boundary point at 

x=1, and  .  

Substituting  (12) into (13) leads to 
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Where                                 
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The third first order differential equation   (11c) can be written 
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the above equation can be expressed  as  
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the fourth ODE (equation 11d) is expressed 
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                                (20)
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The film thickness equation becomes  

 
2

3 2

4 1 32

2 32 2 2
6 2 3

22

2 2
2 2 5 2 2

1 2 3 3

2

1

3
4

2 1
sin cos

4 15 3

2 2 3
sin cos

3 ( ) ( )

5
sin

2 24

t

k S
h u h u u

k A G KM h E h
h u h Gh

h P h K D h K

A K Mh Kh
u G h Gh

h h K P h K D

E k G k
Gh u E

h K




 



 

 


 
  
 
                      
 
  

     
    

  


4 3

1 2

3

1

3 4
sin

2 ( )

(7 15 ) sin 0,
3( ) 2 120

h h K
u

h K

h E k G
EP h K hu

h K h K




 


  
  

  

  
      

    

  (23) 

For the new formulation the boundary conditions are defined 

as follows 

1

1

0

1,

1

(1) (0) 0

N
j

j

j

du
h h d

d

du
w

d






  







   

      (24.a) 
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2
1 1
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(1) (0) 0
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j

j

j

du
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w

d










  

 





   

      (24.b) 

1

3
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j

j

j

du
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d
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




  

 





   

      (24.c) 

1

4
3 3

0

4, 1

1

(1) (0) 0

0
N

j

j

j

du
u u d

d

du
w

d










  

 





   

      (24.d) 

where wj  are the weights of the quadrature.   We have N+4 

equations in N+4 unknowns; N equations from the satisfaction 

of the differential equations at N collocation points, and four 

boundary conditions equations. We have N unknowns in h at 

N collocation points and 4 boundary points unknown, h(0), 

u1(1), u2(0),u3(1). 
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Due to the steepness of the profile close to the rupture points 

in case of the presence of van der Waal forces, we may resort 

to the use of spline collocation method. In this case we divide 

the [0,1]  into m splines. We will redefine  to    such 

that 
m


  . In the governing equations we will replace 

/ 2k   by /(2 )k m and we will add in each spline, the 

following equations 

, ( 1)

1

( ) ( 1) 0; 1,2,....,
N

i j k N

j

j

du
h k h k w k m

d

 



    




     (25.a) 

notice that h(m)=h(0) 

2, ( 1)

1 1

1

( ) ( 1) 0; 1,2,....,
N

j k N

j

j

du
u k u k w k m

d

 



    




     (25.b) 

and u1(m)=u1(0) 

3, ( 1)

2 2

1

( ) ( 1) 0; 1,2,....,
N

j k N

j

j

du
u k u k w k m

d

 



    




     (25.c) 

and u2(m)=u2(0) 

4, ( 1)

3 3

1

( ) ( 1) 0; 1,2,....,
N

j k N

j

j

du
u k u k w k m

d

 



    




     (25.d) 

and u3(m)=u3(0) 

The number of equations to solve are n m  governing 

equations plus ( 1) 4m   boundary conditions. The number 

of unknowns is ( 4) 4n m    which is equal to the number 

of equations and the boundary conditions. As we have shown 

above that the collocation method converts the evolution 

partial differential equation into a set of ordinary differential 

and algebraic equation. For the resulted system, a DAE 

(differential-algebraic-solver)  is needed.   We have chosen the 

DASSL FORTAN code to solve the system which is coded in 

FORTRAN.  It uses backward differentiation formula methods 

to solve a system of DAE.  

  

Fig. 1. Sketch of the inclined nonisothermal  falling film. 

Another solution scheme is derived to solve Eq.10 based on 

recasting the model into two second-order differential 

equations. The second derivative of the thickness is defined as  
2

2

h
v







     

      (26)

 

This equation is written in term of the second-order derivative 

collocation matrix as 

 

2

1

N

ij j

j

B h v




      

      (27) 

the fourth-order derivative of the h can be defined as  

Solid, TH 

Liquid 

Gas, TF 



h(x,t) 

z 

x 
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4 2 2 1

,1 1 , 2 24 2
1 1

N N

ik kj j i i N N

j k

h v
B B h B v B v

 

 

 

 

 
   

 
  

or 

4 2 2

,1 1 , 2 24 2
1

N

ij j i i N N

j

h v
BB h B v B v

 



 



 
   

 


 

      (28)

 

where 

1

1

N

ij ik kj

k

BB B B




  

The third-order derivative of h takes the form 

3 2 1

,1 1 , 2 23
1 2

2

,1 1 , 2 2

1

1

2

, 1, 2,..., 2

N N

ik kj j i i N N

j k

N

ij j i i N N

j

N

ij ik kj

k

h v
A B h A v A v

AB h A v A v
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AB A B i N

 

 

 

 



 







 
   

 

  

  







        (29)

 

Thus we need to solve N differential equations at N 

collocation points  

subject to four boundary conditions  

1 2Nh h 
     

      (30.a)
 

2 2

1, 2,

1 1

N N

j j N j j

j j

A h A h
 



 

 
   

      (30.b)

 

1 2Nv v 
     

      (30.c)
 

2 2

1,1 1 1, 2 2 1, 1,1 1 1, 2 2 2,

1 1

N N

N N j j N N N j j

j j

A v A v A h A v A v A h
 

    

 

     

    (30.d)

 

So we have N+4 equation in N+4 unknowns (hi, 

i=1,2…..,N+2, v1, vN+2) 

For the case of horizontal plane,we could also use the 

symmetry of the equations around η=0, and write the initial 
conditions in a symmetric form; 

)/2cos(1)( kxf                                               

      (31) 

 And then substitute; 

24                                                                       

       (32) 

To obtain; 

  hh 4                                                                  

      (33) 

and 

  hhh 816                                                         

       (34) 

Now we apply collocation in the new domain ]1,0[ , 

corresponding to half length while satisfying the differential 

equations at N interior points . At 1 , we have;  

0











vh
                                                            (35) 

So we have N+2 equations in N+2 unknowns (hi, 
i=1,2…..,N+1, vN+1) 

We also have symmetry around 1 , so we can use spline 

collocation at   , such that we have continuity of the 

function and its first, second and third derivative at the spline 

point   , and apply the above second order approach on 

both sides of the spline point. 
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IV. RESULTS AND DISCUSSION 

The input disturbance considered in the first part of this  work 

is given as: 

( ) 1 0.01sin(2 ) [0,1]f x    
 

   (36)
 

In the following we show and compare the results of three 

numerical methods; 

1. The standard collocation (we call this S4). 

2. Expanding the system equation to a set of 

first-order ODEs (N1) 

3. Expanding the system equation to a set of 

first-order ODEs and using splines, we call 

this NS1 

4. Expanding the system to a set of second-

order differential equations, we call this N2. 

5. Expanding the system to a set of second-

order differential equations, and exploiting 

the symmetry around one point, we call this 

NS2 

6. Expanding the system to a set of second-

order differential equations, and exploiting 

the symmetry around two points, we call 

this NSS2  

First we will study in details the following 

equation; 

24 3 2
3 2

2 2 4 3 2 2

1 1 1 1
3 0,

8 8

h h h h h h
h h

t h h      

         
        

         

    

          (37) 

Fig. 2 shows the film thickness dynamics simulated using the 

N1 method with 12 collocation points  at the zeros of Legendre 

polynomials (Jacobi polynomials with α=β=0). It can be seen 

that the profile starts to oscillate as we approach rupture time. 

This is because as we approach rupture time the van der Waals 

forces of attraction becomes dominant and this leads to sharp 

gradient in the film height profile. Fig. 3 shows that 16 

collocation points are needed to give accurate profile and 

rupture time. Fig. 4,5 shows that with 8 collocation points for 

S4 method the profile starts to deviate early in time. Fig. 6 

shows that for t=9, N1 outperforms S4. 
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Fig. 2. Dynamic behavior of the film thickness with N=12 using N1. 
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Fig. 3. Effect of increasing the collocation points for N1 at different times 
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Fig. 4. Comparison of N1 (N=12) with S4 (N=8) at t=1,5. 
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Fig. 5. Comparison of the new method (N1) with the standard method (S4). 
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Fig. 6. Comparison of the new method(N1) with the standard method(S4) at 

t=9. 

 

Fig. 7 shows that N2 gives oscillatory profile close to rupture 

time. Fig. 8 shows that at t=9, N2 gives satisfactory results for 

N=12, N=16. Fig. 9 shows the profiles for N2 at collocation 

points N=12, 16.  It seems that there are some numerical 

inaccuracies occurring as we increase the time.  Fig. 10 shows 

that N2 near rupture time gives unsatisfactory oscillating 

profile.    

Rupture times are predicted using all three methods. We found 

that the first method N1 predicts the rupture time to be 13.285 

with12 collocation points and 13.0 with 16 points. For the 

standard method prediction with 8 collocation points a rupture 

time of 13.27 is obtained. For N2 and N=16, a rupture time of 

about 13.02 is predicted. Based on these results  we will 

exclude the standard method from further study. We would 

like to find a way to get accurate predictions for the rupture 

time since the evolution equation becomes singular at that 

time. First we thought if we could move the singularity to the 

boundary because the collocation method does not satisfy the 

differential equations at the boundary. This can be done if we 

change the inlet disturbance to 

( ) 1 0.01cos(2 ) [0,1]f x    
 

                        (38)
 

this leads to a shift in  distance ( x)  by 0.75. For this case the 

N1 method is tested with 16 collocation points, the rupture 

time is found to be 13.157. The profile for t=13 is shown in 

Fig..11 and for t=13.157 it is shown in Fig. 12. 

Next we used splines instead of global polynomials. So shown 

in Fig. 11, the height profiles for spline collocation method 

NS1 at t=13, and for (M=2,N=16),(M=2, N=8),and(M=4,N=4) 

where M indicates number of splines and where we used the 

first order derivative approach. They give similar profiles. Fig. 

12 gives profiles close to rupture time for the cases 

(M=2,N=16),(M=1,N=16) and (M=2,N=8).The case of 

(M=2,N=16) gives the best results.  Fig. 13 gives similar 

profiles for the cases of (M=1,N=16),(M=4,N=4),and 

(M=4,N=8). The case of (M=4,N=8) gives the best result and 

as good as (M=2, N=16) of Fig. 12. The second derivative 

spline method NS2 predicts the rupture time to be 13.158 with 

two splines and 8 collocation points in each spline. While the 

first-derivative spline method predicts the rupture time to be 

13.157 with 4 splines and 8 collocation points. Similar results 

were obtained with 2 splines and 16 collocation points.  

We conclude that the first order derivative approach gives the 

best results.  

 Burelbach et al [1] presented numerical results for the case 

when the amplitude of the initial condition forcing function is 

0.1 instead of 0.01 used in this study. They used a finite 

difference method with 40 equal divisions for the solution of 

the governing equations. They gave a rupture time of 

4.16394.The methods presented here gives a rupture time of 

4.0835, e. g., M=4, N=8.  
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Fig. 7. Film thickness dynamics using the second-derivative approach N2. 
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Fig. 8. Effects of the number of Collocation points on the film dynamics at 
t=9 for N2. 
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Fig. 9. Effects of the number of Collocation points on the film dynamics at 
t=13 for N2. 
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Fig. 10. Effects of the number of Collocation points on the film 
dynamics near the rupture time for N2. 
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Fig. 11.  Spline method prediction at t=13. 
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Fig. 12. 1-spline and 2-spline prediction close to the rupture time. 
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Fig. 13. 1-spline and 4-spline prediction close to the rupture time 
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Now we test the NS2 and NSS2 schemes. A suitable choice 

for the weighting function of Jacobi polynomials in this case is 

[6,7],α=1,β=-0.5.The results are plotted in Fig. 14. For NS2 , 

we used N=18, and for NSS2 we used 8 points in each spline 

with λ=0.93. The same result is obtained for NSS2 if we use 

12 points. The rupture time in all cases is 13.158. This is the 

most accurate solution. Thus both methods are recommended 

for horizontal symmetric problems. If we use NSS2 with 4 

points at λ=0.87, we get the same rupture time but with some 

distortion in the profile. 
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Fig. 14. Film thickness dynamics using the second-derivative approach NS2 

& NSS2 near rupture time. 

 

In the rest of this section we study the full equation (10), and 

uses the method NS1 with N=4 & M=16.We used the forcing 

function given by equation (31) with δ=0.1. 

 Data for the cases run are shown in Table I with the resulting 

rupture time shown in the last column. Fig. 15.a shows the 

thickness of an evaporating film at different times without van 

der Waal forces (A=0) and for k=0.5 when the vapor recoil is 

present  

( E
2
/D=2). Fig. 15.b shows the results for the same case but 

with the presence of weak van der Waal forces (A=0.01). The 

rupture time decreases when introducing the molecular forces. 

It can be seen that the profile near the trough becomes steeper 

as we approach the rupture time while at shorter times, the 

profiles for both cases are indistinguishable. Fig. 15.c shows 

the case of stronger van der Waal effect (A=0.1). A large A 

means that initial film thickness is very small and of nano-

scale. The rupture time is shorter and the profile is steeper 

near the trough. 

Fig.s 16.a.b.c. show the effect of increasing k on the film 

thickness for the cases A=0, 0.01 and 0.1 respectively.   The 

local thinning near the trough becomes rapid enough to let the 

liquid flow producing two points rupture away from the 

middle point. It seems that increasing the van der Waal forces 

has only the effect of reducing rupture time but the profiles at 

rupture time are very similar.  

Fig.s 17.a.b.c shows the case of no vapor recoil (E
2
/D=0) but 

with large thermocapillarity (KM/P=2.0) and k=0.5. This 

introduces instability into the thickness profile. The new 

feature here is that as the trough gets closer to the plate 

surface, the film thickness profile becomes sharp and at earlier 

time, the profile is rather flat. The effect of van der Waal is to 

reduce the rupture time.  

Fig.s 18.a.b.c show a similar case to Fig. 17.a.b.c but with 

larger k (k=1.0). Two points rapture occurs away from 

midpoint and this happens at shorter time.  

Now in Fig.s 19a,b,c we study the effect of gravity on the 

behavior of evaporating film with no vapor recoil, 

thermocapillarity, van der Waal and k=0.7. Fig. 19.a shows 

the case of G=0 and Fig. 19.b is obtained with G=5.0. The 

gravity has a stabilizing effect and it increases the rupture 

time. Fig. 19.c represents the case of an inclined plane (q=45, 

G=5). Not only does the inclination reduce the rupture time 

but it increases also asymmetric wave with the location of 

rupture point shifted downstream. 

Fig.s20.a.b.c presents the case of an inclined plane but with 

increasing van der Waal forces (A=0, 0.01, 0.1 respectively) 

and k=0.7. the main effect of van der Waal forcs is to reduce 

the rupture time. 

Fig.s 21.a.b.c present the case of an inclined plane with 

increasing van der Waal forces (A=0, 0.01, 0.1 respectively) 

but with k=2.1. Now the rupture time is shifted upstream and 

again the rupture time decreases with increasing A.  
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T ABLE I 

 PARAMETERS FOR THE SIMULATION RUNS. 

Case G, S  E  
K E2/D KM/P A P k  Rupture 

time 

1 0,0 0.1 0.1 0.1 2.0 0 0 1 0.5 0.2 4.591 

2 0,0 0.1 0.1 0.1 2.0 0 0.01 1 0.5 0.2 4.48 

3 0,0 0.1 0.1 0.1 2.0 0 0.1 1 0.5 0.2 3.905 

4 0,0 0.1 0.1 0.1 2.0 0 0.0 1 1.0 0.2 3.381 

5 0,0 0.1 0.1 0.1 2.0 0 0.01 1 1.0 0.2 3.32 

6 0,0 0.1 0.1 0.1 2.0 0 0.1 1 1.0 0.2 2.9 

7 0,0 0.1 0.1 0.1 0 2 0.0 1 0.5 0.2 3.941 

8 0,0 0.1 0.1 0.1 0 2 0.01 1 0.5 0.2 3.901 

9 0,0 0.1 0.1 0.1 0 2 0.1 1 0.5 0.2 3.551 

10 0,0 0.1 0.1 0.1 0 2 0.0 1 1.0 0.2 2.841 

11 0,0 0.1 0.1 0.1 0 2 0.01 1 1.0 0.2 2.811 

12 0,0 0.1 0.1 0.1 0 2 0.1 1 1.0 0.2 2,571 

13 0,0 0.1 0.1 0.1 0 0 0 1 0.7 0.2 4.931 

14 5,0 0.1 0.1 0.1 0 0 0 1 0.7 0.2 5.160 

15 5,  0.1 0.1 0.1 0 0 0.0 1 0.7 0.2 4.981 

16 5,  0.1 0.1 0.1 0 0 0.01 1 0.7 0.2 4.971 

17 5,  0.1 0.1 0.1 0 0 0.1 1 0.7 0.2 4.851 

18 5,  0.1 0.1 0.1 0 0 0.0 1 2.1 0.2 5.81 

19 5,  0.1 0.1 0.1 0 0 0.01 1 2.1 0.2 5.571 

20 5,  0.1 0.1 0.1 0 0 0.1 1 2.1 0.2 4.811 
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Fig. 15. Free surface evolution with vapour recoil and k=0.5. a)A=0, b) 
A=.01,c)A=.1 
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Fig. 16. Free surface evolution with vapour recoil and k=1, a)A=0, b) 
A=.01,c)A=.1 
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Fig. 17. Free surface evolution with thermocapillarity and k=.5, a)A=0, b) 
A=.01 c)A=.1 
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Fig. 18. Free surface evolution with thermocapillarity and k=1, a)A=0, b) 
A=.01 c)A=.1 
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Fig. 19. Free surface evolution with 
gravity,k=.7,A=0,a)G=0,0,b)G=5,0,c)G=5,pi/4 
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Fig. 20. Free surface evolution with gravity, G=5,pi/4,k=.7 a)A=0, b) 

A=.01,c)A=.1 
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Fig. 21. Free surface evolution with gravity G=5,pi/4,k=2.1 a)A=0, b) 

A=.01,c)A=.1 

CONCLUSIONS 

The present work examines the dynamics of evaporating 

falling films of liquids on heated inclined planes taking into 

consideration intermolecular van der Waal forces which 

becomes active as the film gets thinner. As expected in all 

cases van der Waal forces reduce the rupture time of the 

falling films. Other factors which reduce rupture time include 

vapor recoil, thermocapillarity and increasing wave number 

and increasing the angle of inclination of the plane. Gravity, 

on the other hand, has a stability effect and increases rupture 

time. The numerical solution of the evolution equation is 

carried out using the collocation method. For symmetric cases 

where the plane is horizontal, a two spline collocation second 

order formulation method that makes use of the symmetry 

seems most appropriate. For inclined plane,  a  spline 

collocation first order formulation method is most efficient. 

In summary, the numerical formulation presented here has 

direct applicability to other fourth order non-linear partial 

differential equations such as phase field model of 

infiltration[7]. Its usefulness should be tested in such 

applications. Comparison with other methods such as finite 

difference [1,6], and adaptive rational spectral methods needs 

also to be investigated. 
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