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ABSTRACT 

Bug triage is an essential task in the software maintenance phase. It is the process of assigning a developer 

(fixer) to bug report. Triaging process is performed by the triager, who has to analyze developers’ profiles 

and bug reports for the purpose of making a suitable assignment. Manual assignment consumes time, 

financial resources and human resources; to get a high-quality software with minimum cost, automating 

this process is necessary. Previous researchers tackled this problem as a classification problem from 

different perspectives, either information retrieval approach or machine learning algorithms, some 

researchers handled it as an optimization problem using optimization and assignment algorithms. This paper 

introduces deep analysis for previous studies and empirical comparison for five implemented classifiers on 

the same bug report repository. Results show that Linear SVM has the best performance compared with, 

Logistic regression, BernoulliNB, MultinomialNB and Decision Tree.  

KEYWORDS: Bug triage automation, Machine leaning, Information retrieval. 

1. INTRODUCTION  
In development and maintenance phases in software development life cycle, issues and defects usually 

show up. Developers and testing team members use what is called bug report to document these defects. A 

bug report organizes defect information; such as bug id, summary, reporter name, severity, priority and 

submission date. Issue tracking systems (ITS) such as Bugzilla (Bugzilla, 2014) and Jira (Jira Software, 

n.d.) are used to organize and track the submitted reports. Bug triage process is a main step in handling bug 

reports. It assigns each bug to one of the developers in the ITS, who is qualified enough to fix the assigned 

bug (Alenezi, Banitaan, & Zarour, 2018).  

As a real-life scenario, a coach takes the submitted bugs and starts analyzing the developers’ profiles to 

assign each developer to a bug report based on their experience and the skills required in each bug report. 

Manual triage is a time-consuming process; the trigger, as a human, is not able commit to memory the 

qualifications of each developer and the skills required in each bug report; as a massive number of bug 

reports are submitted to ITS.  

In a daily manner, the submitted bug reports are increasing. In November 2019, Eclipse ITS recorded 

500,000 issue report (Anvik, Hiew, & Murphy, 2006) and 1,600,000 issue report are submitted in Mozilla 
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repository. Also, 800,000 issue reports are received by Mozilla in October 2012, with around 300 new 

changes every day (Anjali, January 2015). These numbers indicate how this problem is sophisticated with 

respect to human resources and financial aspects. What makes it more complicated is tossing actions. 

Tossing a bug report is a process of reassigning it to another developer in case the first one failed to solve 

it. Around 37% of the received bug reports go in reassignment (tossing) process (Gondaliya, Peters, & 

Rueckert, 2018). These tossing actions not only waste financial and human resources but also it delays the 

fixing time. In other words, an overloaded developer can take much time to address the problem, also a less 

qualified developer may fail to fix the assigned bug. In both cases the bug requires longer time to be fixed. 

Accordingly, more human and financial recourses will be required. Therefore, tossing actions should be 

minimized as much as possible.    

The essential point behind the triage problem is assigning the bug report to the developer who is definitely 

able to make the required changes. Given the above-mentioned statistics, it is clear that a triager cannot 

equally distribute the newly submitted bugs over the developers. In addition, there may be sever issue that 

have critical consequences on the whole project. Thus, incorrect assignments decisions may lead to an 

increase in the fixing time and cost. Also, inaccurate assignment between the developers and bug reports 

waist the human resources, because of the tossing actions. According to the National Institute of Standards 

and Technology, handling software bugs requires over $59.5 billion per year (NIST, May 2002). 

Additionally, in Aka company, the payment of a senior bug fixer is $129,328 per year (Glassdoor, n.d.). 

Because of these big numbers, triaging systems must be optimized. 

Because many new approaches showed up recently, each one has different purposes and different 

algorithms. This paper presents a comparative study for a number of research papers exported from IEEE, 

Springer, ACM, IJSDR and ResearchGate, in a period from 2006 to 2022. The main contribution is 

summarized in a four-fold: 

• Summarizing the state of art into a categorization schema; showing the model, algorithms, 
datasets used for each paper and results concluded by each of them. 

•  Providing a comparative analysis among previously published research papers.  

• Introducing an experimental comparison for the performance of five classifiers in developer 
prediction.    

• Providing some open discussion, which leads to find a gap to work on, in the future.   

This paper organizes the work as followed. Section 2 provides a background and an explanation for some 

terminologies, that are necessary to understand the research area. Section 3 introduces a brief summary for 

the state of art. Section 4 discusses the previously proposed approaches in a criticizing manner. Section 5 

shows experimental results of some classifiers used in bug triage problem. Section 6 introduces some ideas 

that could be explored in the future and conclusion.   

2. BACKGROUND 

This section introduces the main terminologies and concepts used in bug triage in addition to the main 

algorithms adapted by previous triaging approaches.  

Bug Report 

A term bug can be defined as an unexpected system response, as a result from a code logical or syntax 

mistake. When the tester finds a bug in a software under test, he uses a bug report document to raise. Bug 

report is a standard form consists of a group of fields to define the raised issue, such as:  

- Bug ID: unique number to identify the bug. 

- Bug Description: a short paragraph describing the issue and the its module. 

- Open date: the date when the assigned developer start working on the bug.  
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- Closing date: the date in which the bug is solved or closed as invalid bug.  

- Bug Severity: it describes the level of impact for the bug. Bug severity is six levels; blocker, 

critical, major, minor, normal and traditional. Blocker is the highest one and traditional is the 

lowest.  

- Bug Priority: it shows the urgency level of fixing the bug. It ranges between high, medium and 

low.  

- Reporter: it shows the name of the person who raised the bug.   

- Status: it shows the stage of the bug report.  

Figure 1: Bug report form Bugzilla bug repository 

After submitting a bug report, to the ITS, it goes through a sequence of sequential stages and takes a 

different state to each report (Bhattacharya & Neamtiu, Sept, 2010). After submitting a bug report, it is 

considered as NEW and it will change to ASSIGNED, if the triager assigned a developer to it, and if the 

developer fixed it successfully, it will be CLOSED. DUBLICATE means that there is another bug report 

describes the same issue. If there is no solution for the bug report, it is marked as INVALID. After solving 

the bug, the manger reviews it, if they decide that it is working appropriately, it will be marked as 

REVIEWD. After that, the manger takes the decision to close the bug and it will be CLOSED. If the 

programmer found that there is still a problem, the bug will be REOPEN for further modifications. Figure 

1 shows the sequence of states that the bug takes starting from ASSIGNED till reaching CLOSED states at 

the end.  

Figure 2 shows an example of a bug report from Bugzilla website (Bugzilla, 2014). Its status is ASSIGNED. 

The bug ID is 1584020. A description of the bug report is given by “Dimension Overly formats sizes as y-

x, not x-y”. This bug report is reported by Haraid and the person who is assigned to work on this bug report 

has a username “Pranshuchittora666”. The reporter attached a file related to the problem to help the 

developer to fix this bug. 
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Figure 2: Bug report lifecycle (Bhattacharya & Neamtiu, Sept, 2010) 

 

Bug Repository  

It is a management system, where the developers can submit the raised issues on, using the template of bug 

report. Then, the submitted bugs are distributed on the available fixers by the trigger. The bug reporter and 

fixer can communicate on the same platform using the comment option on the bug report, that they work 

on. Mozilla (Mozilla bug tracking system, 2016) , GCC (Gcc bug tracking system, 2016), Eclipse (Eclipse 

bug tracking system, 2016), NetBeans (Netbeans bug tracking system, 2016) and OpenOffice (Openoffice 

bug tracking system, 2016) are the most common bug repositories. 

 

2.1 Approaches and algorithms  

Feature selection techniques 
To apply machine learning algorithms, there should be a vector of features to train the model. Feature 

selection chooses the key subset of features that best represent the input. It is a critical step, which has high 

effect on the prediction accuracy. Three common methods were used in the context of bug triage (Z. Zheng, 

2004): 

Information gain (IG): this method evaluates the gain of a feature with respect to the category prediction. 

So, the target variable is used to differentiate between the feature (Z. Zheng, 2004).    

Chi-square (CHI): this method measures the dependency between feature f in the feature vector and the 

class (category ci). It builds a probability distribution for the independency between the feature and the 

class given one degree of freedom. In general, machine learning models tends to use highly depended 

features (Z. Zheng, 2004).  

Correlation Coefficient (CC): it is called Pearson’s Correlation Coefficient. It is used to calculate how a 

feature is associated with the target. It is mainly used in continuous variables. It ranges between -1 and 1 

(Z. Zheng, 2004). 
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Variance Threshold: this method ignores all features with zero variance and specific threshold. It is used to 

decide whether to consider the other features or not. The higher the feature variance, the more likely to 

contain more information (Isabelle Guyon, 2003) 

Natural Language Processing (NLP) 
Most of ML algorithms are not able to handle unstructured data, thus, NLP techniques are applied mostly 

to the summary and description sections of the bug report to extract the essential terms. However, these 

kinds of fields are best describing the bug report. Text mining works on representing this sort of information 

in n-dimensional space to be a structured data. This step composes three main steps: 

- Tokenization: usually, it is the first step in handling the textual data. It is responsible for turning the 

natural language (unstructured data) into numerical structured information that can be represented as a 

vector.  

- Stop words removal: it cleans the data from the noisy words, the irrelevant term that do not provide 

related information to the whole context, such as conjunctions, adjectives and pronouns.   

- Stemming: it is the process of deducting a part of word and turning it to the stem version. For example, 

“profiling” becomes “profile”. 

Topic modeling 
It is used an unsupervised natural language processing technique. The input is the corpus (group of 

documents) and the number of topics. The output is a vector of probabilities, for each document, 

representing the relation of a document to each extracted topic. Many algorithms are used to apply this 

technique, such as Latent Dirichlet allocation (LDA) (Adam Thornton, 2020), which is the most common 

one, Latent Semantic Analysis and Probabilistic Latent Semantic Analysis.    

Information retrieval 
IR works based on a comparison between a single instant from the testing dataset and all the training dataset. 

Thus, it considers a new bug report as a query and using the IR algorithms try to assign it to the best 

developer. The documents (historical bug reports) and the newly submitted ones are represented in a similar 

manner and the assignment decision is taken over a matching process between them.     

Document similarity methods 
To measure similarity between two textual entities, they have to be represented in a similar way. This 

section introduces some document similarity methods.  

Cosine similarity (Wael, 2013) uses the cosine of angle to measures the similarity between two textual 

documents.   

Euclidean Distance (Puoya Tabaghi, 2020) represents the similarity between two coordinate points as a 

line. The shorter the line is, the similar are the two points. 

BM25 (Stephen Robertson, 2009) represents the Best Match. It is used to rank the documents according to 

the relevance between documents.  

BM25F (Tian, Lo, & Sun, 2012) is an extension for BM25. In BM25F, each document is represented as a 

group of fields, such as headline and main text. Each filed is represented by a different weight to imply its 

degree of importance in calculating the similarity. 

Machin Learning (ML) 
Machin learning approach uses artificial intelligence to enable software systems to learn through a training 

phase and implicitly apply in the testing phase without actual programming. ML algorithms are categorized 

into two types; supervised and unsupervised (Flach, 2012). The supervised algorithms are used to predict 
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the model based on previous experience from a historical data. So, the input is labeled old data and the 

output is a forecasting for the label of a new data. This process is called classification, however, if the value 

of the label is continuous, this predictive process is called regression.  

Bug triage problem could be handled as a classification problem; using ML algorithm. The datasets are the 

bug reports extracted from the bug repositories and the classes are the existing developers. The model is 

trained using some historical data; closed bug report with the assigned developers (labels). In the testing 

phase, the model is tested by new and unlabeled dataset, which called the testing dataset.  

Each one in the ML algorithms works over a dataset consists of many samples or records 𝑆𝑖, where 𝑖 =
{1 … 𝑛}. Each record consists of a number of attributes, the problem features {𝑆𝑖1, 𝑆𝑖2, 𝑆𝑖3, … 𝑆𝑖𝑑}, where 
𝑑 = {1 … 𝑚} , in addition to one attribute called, class or label 𝑆𝑖(𝑚+1). Support Vector Machine (SVM), K-

Nearest Neighbors (KNN), Decision Tree are the most commonly used machine learning algorithms.     

Support Vector Machine (SVM) creates an n-dimensional space, in which each feature vector is represented 
as a point. It separates the training instances (points) according to the associated class label. SVM aims to 
maximize the separation of the instance in a form of a hyperplane, which is the output model. SVM labels 
the testing data based on the subspace to which its features belong (Zhou, Zhang, & Lo, 2012).    

k-Nearest Neighbors (KNN) uses the similarity measure to classify a new instance. Each instance in the 
dataset is represented as a point in an n-dimensional space. Euclidean distance is the most common technique 
to calculate the similarity between the new instance and k-nearest neighbors. Based on the similarity results, 
the new instance is labeled by the label of the nearest instance (Beyer, 1999).        

Decision Tree models the training dataset in a form of tree, which consists of some internal nodes 
representing features, in addition to a leaf node showing the corresponding class. Each new instance in the 
testing dataset goes through a group of questions and conditions structured in a tree form. The output of 
Decision Tree algorithm is a model which is able to guide the new instance to the suitable label throughout 
these questions (Bahzad Taha Jijo, 2020). 

Näive Bayes (NB) is a supervised algorithm, that uses Bayesian Theorem of conditional probability to 
determine the class of a new instance. All the features included are independent of each other, and each of 
them has equal contribution in predicting the class of the new instances, (Cristianini, 2000) 

Graph theory 
It is a mathematical representation for the instants of the problem. Each instant is represented as a node or 

vertices and the relation between them is represented by edges. The edge could be weighted showing the 

degree of relation between the two nodes.  

 

Markov Chain Model: this model is represented as a set of states 𝑆 = {𝑠1, 𝑠2, … 𝑠𝑛} and probabilities for 

transactions. The model moves from one state to another according to a specific probability, which is called 

transaction probability. Markov chain model becomes valid only if the current state (Markov property) is 

the only base for calculating the next transaction probability (Nguyen, Nguyen, & Lo, 2012).  

Tossing graph means reassigning a bug report to another developer other than the existing one. Tossing 

graph is a representation for developers, who assigned to a bug report one after another. It starts with the 

first assigned developer and moves to one-another until reaching the actual fixer, the developer who fixed 

the bug. Each step is a tossing action. Tossing path consists of some tossing steps, indicating its tossing 

length (Yadav, KumarSingh, & Suri, 2019).  
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Evaluation metrics   
In bug triage problem, as a prediction problem, there are four main matrices for measuring the efficiency 

of the proposed model; namely accuracy, precision, recall, and F-measure. Confusion matrix is the main 

factor to calculate the values of the four matrices (Fuli Zhang, 2019). It consists of four main values: 

1. True Positive (TP): the instance is positive and the classifier predicted it as positive. 

2. True Negative (TN): the instance is negative and the classifier predicted it as negative. 

3. False Positive (FP): the instance is negative and the classifier predicted it as positive. 

4. False Negative (FN):  the instance is positive and the classifier predicted it as negative. 

Where;  
• True (T): all positive instance. 

• False (F): all instance that are not positive.   

 
Accuracy matrix measure how many instances are correctly classified as the real scenario among all testing 

instances. In bug triage problem, it calculates how many bug reports, in the testing dataset, are assigned to 

the correct developer according to the manual triage. Equation 1 shows the formula to calculate accuracy. 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
                                                                  (1) 

 
Precision matrix calculates the how many correctly classified instances among all instances that are 

assigned to the class by the classifier. In bug triage problem, among all bug reports assigned to developer 

d by the classifier, how many assignments are correct, this is precision value, which is calculated by. 

Equation 2. 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                         (2) 

 
Recall matrix calculates how many instances are correctly classified to be of class c among all instances 

that are originally assigned to that class. In bug triage problem, among all bug reports that are originally 

assigned to developer d, how many bug reports assigned correctly by the classifier to developer d. Equation 

3 shows the formula to calculate recall value.   

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                               (3) 

 
F1-score is a harmonic value between the recall and precision. It ranges between 0, when either the recall 

or the precision is zero, and 1, which is the best scenario. Equation 4 shows how F1-score value is 

calculated. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                     (4) 
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Figure 3: Statistics about the use of the evaluation matrices to evaluate the bug triage automation approach  

Accuracy, recall, precision and F-measure matrices are the most common evaluating methods in bug triage 

problem. Figure 3 shows the percentage of using each of them across the bug triage research papers. 

Accuracy matrix is the most common one, it is used in more than 80% of the research papers, followed by 

the recall and precision. F-measure is the least. On the other hand, other researchers measure the 

effectiveness of the proposed model by estimating the total fixing time, calculating the tossing actions 

reduction, estimating the workload among developers. This step is completely dependent on the main goal 

of the research study.      

 

3. BUG TRIAGE APPROACHES 
Several researchers proposed different approaches to automate the triage process. Information retrieval 

approach is utilized by some of them. These approaches are either IR or ML techniques. Few researchers 

used fuzzy techniques to improve the IR approach. In addition, the graph theory is used to handle the triage 

process describing relations for different sorts of sets. Additionally, some researchers took the optimization 

approach to tackle the triage problem.      

3.1 Information Retrieval Based 
Many researchers leverage IR techniques to explore textual bug report attributes, for example, bug 

description and title to automate the triage process, where the new submitted bug report is considered a 

query. 

 
Pahins et al (C´ıcero A. L. Pahins, 2019) proposed the T-REC method that combines the information 

retrieval approach and machine learning in order to reduce the triage time spent. VSM is applied and 

supported by the FastText approach to convert the textual features into embedding vectors, in addition to 

bag-of-words (BOW) model and Latent Semantic Analysis (LSA). Noisy-Or Classifier is used as a cross 

validation method to split the datasets into a number of folds. Experimental results show that the proposed 

algorithm increases the prediction by up to 30%. It is evaluated over an industrial dataset consists of 9.5M 

about mobile bug reports. He concluded that the T-REC can reach 50.9% to 89.7% accuracy. 

Yin et al (Ying Yin, 2018) proposed a new hybrid bug triage method that depends on supervised leaning 

and ELM approach, which is a new tool that is used to train a single hidden layer based on feedforward 

neural network. The main focus of their solution is feature reduction. In order to not using all features, a 

large searching space is constructed to select only the features that clearly represent the actual content. The 
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greedy algorithm is used for that purpose. In addition, VSM, which is a supervised learning algorithm, and 

TF-IDF are used for feature extraction. All in all, the ELM regression strategy is used for the assignment 

purpose. The bug reports dataset used to evaluate the proposed algorithm, 5200 from Bugzilla (Bugzilla, 

2014), 4100 from Eclipse, 3824 from Netbeans and 2102 from GCC are exported. By comparing the 

proposed algorithm with other classifiers, such as SVM, C4.5, NaiveBayes, and KNN classifiers, results 

show that ELM concluded the best results, in terms of the triage accuracy. It reaches 71.2% using the 

Netbeans dataset.    

Sahu et al (Sahu, Lilhore, & Agarwa, 2018) used hybrid selection method to reduce the dataset size. Feature 

selection and instance selection methods are used to reduce the number of features extracted from each bug 

report. Their proposed approach is based on K-Nearest Neighbor and Naive Base approaches (KNN+NB). 

By using Mozilla dataset (Mozilla bug tracking system, 2016), the accuracy percentage achieved is 85%. 

Xin et al (Xia, Lo, Ding, M. Al-Kofahi, & N. Nguyen, 2017) came up with a new approach named 

TopicMinerMTM to handle the bug triage problem. It is an extension to the Latent Dirichlet Allocation 

(LDA) algorithm (Hofmann, 1999). It evaluates the relation between the between the bug report and the 

assigned developer. It uses the topic modeling distribution to choose a suitable developer for each bug 

report. GCC (Gcc bug tracking system, 2016), Eclipse (Eclipse bug tracking system, 2016), NetBeans 

(Netbeans bug tracking system, 2016), OpenOffice (Openoffice bug tracking system, 2016), Mozilla 

(Mozilla bug tracking system, 2016) are used for evaluation. The total number of bugs is 227,278 bug 

reports. The prediction accuracy ranges between 48% to 90%. 

Sun et al (Sun, Lo, Khoo, & Jing , 2011) followed the approach of removing the duplicated bugs to reduce 

the dataset. Accordingly, the cost and time will be optimized. Thus, instead of two fixers are busy with the 

same bug report, using this automatic detector only one will be in charge. REP is a retrieval function, that 

extends BM25F in (Robertson, Taylor, & Zaragoza, 2004). This function takes into account the long bug 

reports which provide many components such as product, component, and version. To validate the proposed 

technique, Mozilla (Mozilla bug tracking system, 2016), Eclipse (Eclipse bug tracking system, 2016) and 

OpenOffice (Openoffice bug tracking system, 2016) are used. 209,058 reports are used from Eclipse. The 

results are concluded to be 37–71% in recall and 47% in mean average precision. 

Nguyen et al (Nguyen, Nguyen, & Lo, 2012) used the mindset of Sun in reducing the bug triage cost by 

identifying the duplicated bugs. They proposed a model, with name duplicate bug report detection approach 

(DBTM), by combining the information retrieval (IR) based features and topic-based features approach as 

an extension for Sun’s approach. Each bug report is represented as a textual document to describe the 

technical issues in the system. Textual similarity is used to detect the duplicate reports. In feature extraction, 

they combined both IR and topic modeling by applying ensemble averaging technique. This technique is 

defined as the mean of quantity. Gibbs sampling is a sampling technique known also with name Markov 

chain Monte Carlo (MCMC) algorithm. It uses multivariate probability distribution in order to achieve 

observations in a sequential manner. It is used to train DBTM on the dataset. Results show that DBTM 

reduced the triage cost by up to 20% compared with the state of art. 

Matter et al (Matter, Kuhn, & Nierstrasz, May 2009) used vector space model to extract information from 

bug reports source code contributions for the purpose of modeling a developer’s expertise. In the triage 

process, authors compared the vector of the upcoming new bug vector with the vectors of developers’ 

expertise. They used bug reports of eight years from Eclipse (Eclipse bug tracking system, 2016) 
development bug data. They included 130,769 bug reports for the case study. Using top-10 

recommendations list, they achieved triage accuracy up to 71.0% 
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3.2  Machine learning Based 

Researchers used ML algorithms to handle the triage problem as a classification problem. The historical 

bugs (previously solved bugs) are used to train the model, then a prediction step is executed to assign a 

developer for each new bug report. 

Kashiwa et al (Yutaro Kashiwa, 2020) is the first researcher focused on the developer workload. Based on 

an assumption, equal distribution of bug reports over developers can optimize the fixing time. The authors 

formulated the triage problem as a multiple knapsack problem for the purpose of finding the best assignment 

between the developers and the bug reports taking into account the work load of each developer. SVM 

classifier and Laten Dirichlet allocation are used for classification purposes. The algorithm is evaluated 

using bug reports from Mozilla Firefox (Mozilla bug tracking system, 2016), Eclipse (Eclipse bug tracking 

system, 2016) Platform and GNU compiler collection (GCC) (Gcc bug tracking system, 2016). Compared 

with the manual triage, the bug fixing time is saved by 35%–41%. 

Lucas et al (Panjer, 2007) used data mining tools to predict the bug report fixing time. 0-R, 1-R, Decision 

Tree, Naïve Bayes and Logistic Regression are used. After executing the model over bug reports from 

Bugzilla (Bugzilla, 2014) and Eclipse (Eclipse bug tracking system, 2016), results show that Logistic 

Regression is the best algorithm in developer prediction, with accuracy 34.9%.    

S. Mani et al (Mani, Sankaran, & Aralikatte, 2018) used deep learning model called deep bidirectional 

recurrent neural network (DBRNN-A) model to represent bug reports. This approach uses long word 

sequence to learn syntactic and semantic features. The bug report description and title are included. He used 

four different classifiers namely multinomial naive Bayes, cosine distance, support vector machines, and 

Softmax are compared. The bug reports used are from three different repositories Google Chromium 

(383,104), Mozilla Core (314,388), and Mozilla Firefox (162,307) (Mozilla bug tracking system, 2016). 

According to the experimental results, DBRNN-A along with Softmax is better than the bag of words 

model. Additionally, he reported the importance of the bug report description in improving the classification 

performance is reported.    

Bhattacharya et al (Bhattacharya & Neamtiu, Sept, 2010) used the bag of words technique in addition to 

the term frequency-inverse document frequency (TF-IDF) techniques in order to extract the features. The 

information extracted from each bug report are title, description, keywords, products, components and last 

developer activity. TF-IDF is used to represent the importance of a word in each document. Naive Bayes, 

Bayesian network and tossing graph are used to build the classifier. The dataset is relatively large, they 

used 306,297 bug reports from Eclipse and 549,962 from Mozilla (Mozilla bug tracking system, 2016). The 

achieved prediction accuracy is 83.62%. By considering the report ID, the average prediction accuracy 

became 77.64%. However, the prediction accuracy dropped to 63% when ignoring the bug report ID.    

Anvik et al (Anvik, Hiew, & Murphy, 2006) used ML approach to put some constrained to filter the data 

used from each bug report. In the training stage, the inactive developers who no longer working are ignored. 

The bug report fields used are the title and description. To apply feature extraction, authors used the 

normalized tf, a text mining algorithm to apply term frequency on two-fold normalization manner. Three 

different classifiers are applied, SVM, Naive Bayes, and C4.5. The achieved precision is up to 64%.  

Gondaliya et al (Gondaliya, Peters, & Rueckert, 2018) used different methods of text mining; 

Lemmatization: to reduce the inflectional forms, part-of-speech tagger (POS tagger): a software used to 

read texts in any language, it assigns part of speech for each term, bigram: consists of a sequence of n 

adjacent elements (n=2) from string of tokens for the purpose of extracting the probability of token given 

another token, and finally, stop word removal: to filter the textual data from any unused terms such as “a” 

and “an”. Bug reports are classified through Linear Support Vector Machines (SVMs), multinomial naive 

Bayes, and Long Short-Term Memory (LSTM) networks and accordingly triage them. By assessing the 

proposed approach over small dataset (1215 bug report), the accuracy of the three classification techniques 

was 47.9 % → 57.2%. For the large dataset the performance ranged from 68.6% → 77.6%. 
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3.4  Fuzzy Based 
Tamrawi et al (Tamrawi, Nguyen, Al-Kofahi, & Nguyen, 2011) proposed a new automated approach called 

Bugzie for bug triage. It mainly uses fuzzy set and caching the developers. A model is used to cash the 

developers in a form of queue according to their skills and experience. After that, the assignment phase is 

executed one by one starting from the first developer in the queue. Each developer is represented by a score 

explaining his previously fixed bug reports. The author assumed that the software system has many 

technical aspects, the fuzzy represents each term in them. Bugzie, their proposed approach combines the 

fuzzy sets and the score of each developer to predict the most suitable developer for each new bug report. 

The prediction accuracy ranged between 75% to 83%.        

3.5  Graph Theory Based 
 

Graph theory is used by some researchers to represent different kinds of relations between the bug report 

and developers.  

Zaidi et a (Syed Farhan Alam Zaidi H. W.-G., 2022) used the graph representation approach to solve the 

bug triage approach. The description and summary fields from the bug report are used to build a 

heterogeneous graph. The proposed solution consists of two layers of graph convolution network (GCN); 

the first one represents word to word co-occurrence and the second one is about word to bug report. point-

wise mutual information (PMI) is used to weight the edges between words in the first layer and TF-IDF is 

used to calculate the occurrence rate for the second layer. In addition, Softmax activation function is used 

in the prediction stage. Five different datasets are used from Bugzilla (Bugzilla, 2014) and Firefox. Among 

many distance measurement approaches used, such as PMI, cosine, Jaccard, and Euclidean techniques, PMI 

recorded the best performance. Comparing with the previous automating triage approaches, predicting top-

1 accuracy gets higher by 3% to 6% and up to 5% to 8% in top-10 accuracy.      

Zaidi et al (Syed Farhan Alam Zaidi F. M.-G., 2020) again focused on the word-embedding techniques to 

rank the developers. They proposed a deep-learning based technique that used the convolutional neural 

network (CNN). Three different word representation techniques are used namely; Word to Vector 

(Word2Vec), Global Vector (Glove), and Embeddings from Language Models (ELMO). The main solution 

consists of three layers; word representation, convolutional network and Softmax for prediction actions. In 

many cases, GloVe outperforms the CNN, only with high numbers of samples. By evaluating their model 

over three different datasets; 1465 bug reports from JDT, 4825 bug reports from platform and 13667 bug 

reports from Firefox, and using the 10-fold cross validation approach for splitting the datasets, results show 

that ELMO-CNN is the best, which reaches 87.23% accuracy.  

Aleroud et al (Alazzam, Aleroud, Latifah, & Karabatis, 2020) introduced a graph-based approach 

representing the relations between the bug report terms. He classified the bug reports according to their 

priority. Accordingly, he believed that highly-skilled developers should be assigned to the bug report with 

high priority and for the low priority ones, the new developer, who are not experienced, should be allocated. 

RFSH technique, RF is the regular feature, S is the summary feature and H is a hybrid approach that depends 

on a cutoff percentage, is proposed to predict the bug priority. Rather than LDA, which is the main focus 

(Xia, Lo, Ding, M. Al-Kofahi, & N. Nguyen, 2017) and (Yutaro Kashiwa, 2020), Aleroud  (Alazzam, 

Aleroud, Latifah, & Karabatis, 2020) stated that using LDA, which might use unrelated terms, can mislead 

the classification action. Additionally, LDA cannot capture all relations between the terms. Therefore, the 

proposed approach handles this by removing the outlier terms, that may be related to different terms. KNN, 

SVM, and decision tree (DT) techniques are used for classification purpose. The proposed approach is 

tested against 135 548 bug reports from Bugzilla (Bugzilla, 2014) bug repository. Results show that SVM 

worked the best in terms of accuracy and precision.   

Jeong et al (Jeong, Zimmermann, & Kim, 2009) proposed the use of Markov chain-based model to reduce 

the bug tossing actions. It introduces developer network which used to explain the team structure that can 
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be used to find the appropriate developer for each newly submitted bug report.  445,000 bug reports are 

used from Mozilla (Mozilla bug tracking system, 2016) and Eclipse (Eclipse bug tracking system, 2016). 

Experiments show that the tossing rate is reduced by 72% and the prediction accuracy is increased by 32%.   

Yadav et al (Yadav, KumarSingh, & Suri, 2019) came up with a three-stage novel strategy called developer 

expertise score DEC. First, an offline process to assign a score for each developer based on versatility, 

priority and the average fixing time. Finding the capable developers is handled by applying the similarity 

measures such as namely feature-based, cosine-similarity and Jaccard. Second, ranking the developers 

according to their DES. Finally, Navies Bayes, Support Vector Machine and C4.5 classifiers are used for 

classification purpose and he compared their performance with the ML-based bug triage approaches. By 

evaluating the algorithm over five open-source datasets (Mozilla (Mozilla bug tracking system, 2016) 

,Eclipse (Eclipse bug tracking system, 2016), Netbeans (Netbeans bug tracking system, 2016), Firefox) 

with 41,622 bug reports, results show that DES systems recorded 89.49% in mean accuracy, 89.53% in 

precision, 89.42% in recall and 89.49% in F-score. Additionally, the bug tossing length is reduced by 

88.55%. 

3.6 Bug Triage Optimization Based 

Park et al (Jin-woo Park, 2011) also used LDA to categorize bug reports for the purpose of enhancing the 

prediction accuracy in their proposed solution, COSTRIAGE. To formulate a developers’ profile Arun’s is 

used to determine the optimal number of K and accordingly average fixing time is used to represent the 

developer experience with respect to the topic modeling results. To evaluate COSTRIAGE, bug reports 

from Linux, Apache, Mozilla and Eclipse bug repositories are extracted. Using 80% of the dataset for 

training the model and 20% for testing, results show that fixing time is reduced by more than 30% in Apache 

dataset, with 4.5% to 69.7% in prediction accuracy. 

Madonna et al (Mayez, Hamdy, & Nagaty, Arxiv, 2022) used the Hungarian algorithm and topic modeling 

technique to assign a developer to each bug report. The proposed approach consists of three main stages; 

namely, the labeling phase, the scoring phase and the assignment phase. To set a score for each developer, 

the data extracted and from each bug report and the skills of each developer are represented using the value 

of the average fixing time of the developer. Topic modeling is used to differentiate between the types of 

bug reports and also the skills required to fix each bug report; so, each bug report is labeled by a topic and 

each developer will be represented by a vector of numbers showing his score in each topic. Using these two 

phases, a bipartite graph is built, which is the input to the Hungarian model. The algorithm is validated 

using 26,317 bug reports from Bugzilla (Bugzilla, 2014) and 37,154 bug reports from RedHat. Results show 

that the fixing time is reduced by 17% in Bugzilla and 47% in RedHat. In addition, the developer work load 

is equally distributed across the developers set. 

Madonna et al (Mayez, Nagaty, & Hamdy, Arxiv, 2022) represented the developer experience using bug 

severity, component and the median fixing time. The goal is to optimize the total fixing time and normalize 

the work load among developers. Authors used data cleaning, preprocessing and embedding similar to 

(Mayez, Hamdy, & Nagaty, Arxiv, 2022). However, in this research, authors used a recommendation 

system using matrix factorization. So, for each bug report, there is a set of candidates (developers), who 

might be eligible for fixing the bug. Deciding the most appropriate developer is taken over Gale-Shapely 

algorithm. To evaluate the proposed model, bug reports from Linux, Apache and Eclipse repositories are 

exported. By comparing the optimization results with COSTRIAGE model (Jin-woo Park, 2011), results 

show that Madonna et al (Mayez, Nagaty, & Hamdy, Arxiv, 2022) model is far better than COSTRIAGE 

approach, in terms of fixing time optimization.  

Table 1, 2, 3, 4 and 5 summarize a number of research papers that focused of handling the bug triage process 

in the four above mentioned categorization, starting from 2006 to 2022.   
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Table 1.  Summary for the bug triage automation techniques using information retrieval approach 

Author Bug repository Techniques Results 

Pahins (C´ıcero A. L. 

Pahins, 2019) 

9.5M industrial mobile bug 

reports 

T-REC, bag-of-words (BOW), FastText 

approach, Latent Semantic Analysis (LSA) 

Acc: 50.9% to 89.7%  

Yin (Ying Yin, 2018) Bugzilla: 5200, Eclips: 4100, 

Netbeans: 3824 and GCC: 

2102  

TF-IDF, VSM, ELM Acc: 71.2% 

Sahu (Sahu, Lilhore, & 

Agarwa, 2018) 

From Mozilla dataset  Combination of K-Nearest Neighbor and 

Naive Base (KNN+NB). 

Acc: 81.3%, Recall: 

94.9%, Precision: 

85.3%, F1- measure: 

89.6%. 

Xin (Xia, Lo, Ding, M. 

Al-Kofahi, & N. 

Nguyen, 2017) 

227,278 From GCC, 

NetBeans, Eclipse, 

OpenOffice, Mozilla  

Topic modeling: Latent Dirichlet Allocation 

(LDA) 

Acc: 48% - 90%. 

Nguyen (Nguyen, 

Nguyen, & Lo, 2012) 

OpenOffice: 31,138, 

Mozilla: 75,653 and Eclipse: 

45,234  

  

Markov chain Monte Carlo (MCMC), 

Textual similarity, topic modeling and Gibbs 

sampling. 

20% triage cost 

optimization.  

Acc: 82% in 10-k 

 

Sun (Sun, Lo, Khoo, & 

Jing , 2011) 

209,058 reports from Eclipse Gradient Descent, linear kernel SVM to 

optimize REP 

Recall:37–71%,, 

Precision: 47%. 

 

Matter (Matter, Kuhn, 

& Nierstrasz, May 

2009) 

Eclipse:130,769  Bags of words, cosine similarity Recall: 71.0%. 

Precision: 33.6%   

 

Table 2.  Summary for the bug triage automation techniques using machine learning approach. 

Author Bug repository Techniques Results 

Kashiwa (Yutaro 

Kashiwa, 2020) 

Mozilla Firefox, Eclipse  

Platform and GNU 

compiler collection (GCC). 

Knapsack approach, SVM classifier and 

Laten Dirichlet allocation 

35%–41% reduction 

for the fixing time 

S.Mani  (Mani, 

Sankaran, & 

Aralikatte, 2018) 

Google Chromium: 

383,104, Mozilla Core: 

314,388, and Mozilla 

Firefox: 162,307 

Recurrent neural network, naive Bayes, 

cosine distance, support vector machines, 

and Softmax and bag of words  

Softmax is better than 

the bag of words 

model. 

Acc: 46.6% 

Bhattacharya 

(Bhattacharya & 

Neamtiu, Sept, 

2010) 

Eclipse: 306,297 and 

Mozilla: 549,962 

Frequency inverse document frequency (TF-

IDF), Naive Bayes and Bayesian network  

Acc: 77.64% -83.62% 

Recall: 50% 

 

Lucas (Panjer, 

2007) 

Bugzilla and Eclipse  0-R, 1-R, Decision Tree, Naïve Bayes and 

Logistic Regression 

Accuracy 34.9%. 

Anvik (Anvik, 

Hiew, & Murphy, 

2006) 

Training sets (Eclipse 

:8655, Firefox: 9752) and 

testing sets (Eclipse :170, 

Firefox: 22) 

SVM, Naive Bayes and C4.5. Precision: 51%. 

Recall: 24% 

Acc:28% 

Gondaliya 

(Gondaliya, Peters, 

& Rueckert, 2018) 

Large dataset: 7346 Part-of-speech tagger, bigram, stop word 

removal, Linear Support Vector Machines 

(SVMs), multinomial naive Bayes, and Long 

Short-Term Memory (LSTM) networks 

68.6%- 77.6% 

small dataset: 1215 47.9 - 57.2%, 
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Table 3.  Summary for the bug triage automation techniques using graph theory approach 

Author Bug repository Techniques Results 

Zaidi (Syed Farhan 

Alam Zaidi H. W.-G., 

2022) 

Bugzilla and Firefox. Graph convolution network (GCN), point-

wise mutual information (PMI), TF-IDF and 

Softmax  

Top-1 accuracy 

increased by 3 to 6% 

and 5 to 8% in top-10. 

Zaidi (Syed Farhan 

Alam Zaidi F. M.-G., 

2020) 

JDT: 1465, platform:4825 

and Firefox: 13667  

Deep-learning, convolutional neural 

network (CNN), Word to Vector 

(Word2Vec), Global Vector (Glove), and 

Embeddings from Language Models 

(ELMO), Softmax and 10-fold 

Acc: 87.23%. 

Aleroud (Alazzam, 

Aleroud, Latifah, & 

Karabatis, 2020) 

Bugzilla: 135,548  RFSH technique, LDA, KNN, SVM, and 

decision tree (DT) 

SVM is the best 

classifier 

Acc: 94.1% 

Precision: 92.5% 

Recall: 94.1% 

F-measure: 93.3%   

Jeong (Jeong, 

Zimmermann, & Kim, 

2009) 

445, 000 from Mozilla and 

Eclipse 

Markov chain-based model Tossing actions are 

reduced by 72% and 

acc increased by 32%  

Yadav (Yadav, 

KumarSingh, & Suri, 

2019) 

41,622 from Mozilla, 

Eclipse, NetBeans, Firefox 

(Mozilla bug tracking 

system, 2016) 

feature-based, cosine-similarity, Jaccard, 

Navies Bayes, Support Vector Machine and 

C4.5 

Acc: 89.49%, 

precision: 89.53%, 

recall: 89.42%, and F-

score: 89.49% 

 

Table 4.  Summary for the bug triage automation techniques using fuzzy approach 

Author Bug repository Techniques Results 

Tamrawi (Tamrawi, 

Nguyen, Al-Kofahi, 

& Nguyen, 2011) 

Firefox:177,028 Eclipse: 

110,231 NetBeans: 

42,797 FreeDesktop: 

39,771 

Bugzie, cashing technique Acc: 75-83%.        

Table 5.  Summary for the bug triage automation techniques using Optimization approach. 

 
Author Bug repository Techniques Results (Fix time 

optimization) 

Park et al (Jin-woo 

Park, 2011) 

Linux Topic modeling (LDA), content-boosted 

collaborative filtering (CBCF), combining an 

existing CBR with a collaborative filtering 

recommender (CF) 

28.9 %, 

Eclipse 10.6 % 

Apache 59.66% 

Madonna et al 

(Mayez, Nagaty, & 

Hamdy, Arxiv, 2022) 

Linux Topic modeling (LDA), developer score, matrix 

factorization, Gale-Shapely and Time-split 

approach,  

80.67% 

Eclipse 23.61% 

Apache 60.22% 

Madonna (Mayez, 

Hamdy, & Nagaty, 

Arxiv, 2022) 

RedHat: 37,154 Topic modeling (LDA), developer score, 

Hungarian Algorithm, Time-split approach, 

Bipartite graph.   

47% 

Bugzilla: 26,317 17% 
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4 ANALYSIS AND DISCUSSION 

In previous studies, authors handled the problem as a classification problem considering that each developer 

is a class. The high accuracy recorded from them such as (Sahu, Lilhore, & Agarwa, 2018), (C´ıcero A. L. 

Pahins, 2019), (Yadav, KumarSingh, & Suri, 2019) and (Bhattacharya & Neamtiu, Sept, 2010) is because 

the used classifiers work good in the limited datasets with limited number of classes, but when the number 

of classes get bigger, the accuracy will negatively affected. Others used information retrieval approaches, 

they focused on analysis the training dataset and match between the new bugs and the historical ones to 

determine which developer is more appropriate. Considering the manual triage as the optimal one, Xin et 

al (Xia, Lo, Ding, M. Al-Kofahi, & N. Nguyen, 2017) recorded the highest accuracy percentage, almost 

90%. Few researchers followed the approach of minimizing the total fixing time, Kashiwa et al (Yutaro 

Kashiwa, 2020) used Knapsack approach, followed by Madonna et al (Mayez, Hamdy, & Nagaty, Arxiv, 

2022), who handled it as an assignment problem using optimization approach. A special factor in those two 

papers, not only the optimizing the fixing time but also, the load is normalized among developers, the 

number of bug reports assigned to each developer are almost normalized.   

Representing the developer skills in a numerical form is a perfect way to choose or recommend the 

appropriate developer easily. Madonna et al (Mayez, Hamdy, & Nagaty, Arxiv, 2022), Yadav et al (Yadav, 

KumarSingh, & Suri, 2019) and Tamrawi et al (Tamrawi, Nguyen, Al-Kofahi, & Nguyen, 2011) used this 

technique with different factors. Yadav et al (Yadav, KumarSingh, & Suri, 2019) used severity, component 

and average fixing time to represent the experience of each developer. Madonna et al (Mayez, Hamdy, & 

Nagaty, Arxiv, 2022) inspired by their idea, she focused on the average time spent and added the topic 

modeling results as a factor. Thus, the experience of each developer will be represented as a vector of 

numbers. Each number represents the developer average fixing time in one topic. However, the goal of 

Yadav’s et al (Yadav, KumarSingh, & Suri, 2019) work is classification, that ended up with 89.5% 

accuracy. Madonna et al (Mayez, Hamdy, & Nagaty, Arxiv, 2022) focused on optimizing the total fixing 

time; 47% reduction in fixing time.  

Graph theory is used in few papers representing different relations. Zaidi et al (Syed Farhan Alam Zaidi H. 

W.-G., 2022) used the graph to represent how much each bug report is related to each of the terms, that 

resulted from the TF-IDF. In addition, Madonna et al (Mayez, Hamdy, & Nagaty, Arxiv, 2022) used the 

complete bipartite graph to represent the relations between the bug reports and developers. The relations 

represent the skills of developers in the area of the corresponding bug report.  

Many researchers used topic modeling approach to differentiate between bug reports. Xin et al (Xia, Lo, 

Ding, M. Al-Kofahi, & N. Nguyen, 2017) used LDA to match between the topics and the developers 

experience. Nguyen also used LDA. Both of them recorded high accuracy, 48%-90% for Xin et al  (Xia, 

Lo, Ding, M. Al-Kofahi, & N. Nguyen, 2017) and 20% cost reduction for Nguyen. Additionally, Madonna 

et al (Mayez, Hamdy, & Nagaty, Arxiv, 2022) used LDA as a step to set a scoring phase, each developer 

has a score per topic, where the fixing time is reduced by 47%. On the other hand, Aleroud et al (Alazzam, 

Aleroud, Latifah, & Karabatis, 2020) stated that using topic modeling can add some noise in calculating 

the accuracy, some unrelated terms can be included. So, a layer of filter is added to exclude the outliers 

(unrelated terms).  

Zaidi et al (Syed Farhan Alam Zaidi F. M.-G., 2020) recorded high accuracy; however, the technique overall 

is not cost-effective. The dataset is very large, which requires large memory and time. They used the graph 

to represent word-to-word relations, which makes the graph significantly large to be loaded and reused. 

Therefore, the training phase using graph convolution network (GCN) takes long time to be done, which 

contradict one of the main goals, automating the bug triage to reduce the total fixing time.  

Most of the pre-mentioned papers use the 10-fold technique to split the dataset into training and testing, 

such as Zaidi et al (Syed Farhan Alam Zaidi F. M.-G., 2020) and Madonna et al (Mayez, Hamdy, & Nagaty, 

Arxiv, 2022). But in this sort of problems, the chorological order is important. Because the bug reports 
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should be assigned according to their date of submission, what comes first should be assigned first. 

Therefore, Madonna et al (Mayez, Hamdy, & Nagaty, Arxiv, 2022) mentioned that the exported datasets 

are ordered chronologically as a pre-step before applying the 10-fold approach, which called time-split 

approach. Another point in cleaning the datasets, many researchers exclude the inactive developers, who 

fixed few bug reports, for example 10 bugs, in their history. However, Zaidi et al (Syed Farhan Alam Zaidi 

F. M.-G., 2020) stated that, this step can negatively affect the final results.  

5 EMPIRICAL STUDY  

Most of the previous work focus on the prediction of the appropriate developers, thus different classifiers 

are applied. For results validation, this section introduces classification results of five previously applied 

classifiers, using a single dataset. Bug reports from Eclipse (Eclipse bug tracking system, 2016) are 

exported, in JSON format.    

XSLT parser is used to parse bug reports. As a cleaning step, bug reports with missing information, such 

as empty assignee cell, are discarded. The features used for classification are bug assignee, cug component 

and bug description (summary). The corpus, description section in each bug report, is cleaned using stop 

word removal. For preprocessing purpose, all bug reports are stemmed using Snowball stemming. 

Considering the bug description, assignee and bug component, five common classifiers are implemented. 

160,000 bug report are exported. After cleaning, only 66723 bug report meet the requirements. The dataset 

is split in 80% for training and 20% for testing. In each experiment, classifier should predict the optimal 

developer for each bug report in the testing dataset. Prediction accuracy is calculated against the developers 

assigned using the manual triage.  
  

Table 6.  prediction based comparison among five classifiers used in bug triage problem using Eclipse . 

 LinearSVM 

(Lubor 

Ladicky, 

2011)  

Logistic regression 

(Zou, Hu, Tian, & 

Shen, 2019 ) 

BernoulliN

B (Gurinder 

Singh, 2019) 

MultinomialNB 

(Muhammad Abbas, 

2019) 

Decision Tree 

(Philip H. 

Swain, 1977) 

Prediction 

accuracy 
81% 32% 66% 78% 33% 

   

Table 6 shows the prediction performance of some classifiers using one dataset. Linear SVM, Logistic 

regression, BernoulliNB , MultinomialNB and Decision Tree are implemented and tested, in terms of their 

prediction performance. Results shows that Linear SVM has the maximum prediction accuracy compared 

with other classifiers, followed by MultinomialNB and BernoulliNB. However, Logistic regression and 

Decision Tree have very low prediction accuracy. What makes SVM classifier perform better than some 

other classifiers, such as Naive Bayes and Decision Tree, is that is uses lines to separate the between the 

data points. In the prediction step, it chooses the best line to predict the class of each data points.  

6 FUTURE RESEARCH DIRECTION AND CONCLUSION 

This section focuses on new research directions that could be used in the future as modifications and 

extensions for the existing triaging approach.    

• The bug description field is the main focus in most of previous research works. Many authors 

applied natural language processing techniques and text mining to extract the main concepts from 

each bug report. This manner worked well in most of the previous studies that ended up by high 

prediction accuracy and fixing time optimization. After deep investigation, we found that comment 

section in each bug report has detailed information about not only the bug details but also the 
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developer interests. It mainly has much details about a bug report and developer interests. Thus, 

bug comments will be research area in our future work.  

• Setting a score for each developer is an open research area. Previous research papers included 

limited features from bug report, such as bug severity, component, submission time, closed time 

and priority. However, more features from bug report could be used to formulate this step. Such as 

comments and attachments.  

• Because developers set is changing over time, some developers leave the project and others join, 

bug triage depends on the types of the newly submitted bug reports and the skills of existing 

developers. Thus, it could be handled as a stochastic problem. Stochastic model depends on 

probability forecasts and random variables to predict outcomes. It is a new area that could have a 

great impact on the whole software maintenance process.      

In conclusion, bug triage is a time-consuming process, when done manually. Different techniques are used 

to cope with this dilemma. Some of them used classification approach, others used information retrieval 

approach to automate it. Few researchers focused on the fixing time reduction and developer load 

normalization. In experiments done by previous work, prediction results are varying but most of them are 

perfect, however each approach has some limitations. Some papers focus on developer prediction and 

ignores the developer work load, others consider the total fixing time optimization and developer work load 

but they totally ignore the classification accuracy. This paper summarizes the previous work, algorithms, 

datasets, bug repositories and the results, followed by some analysis. In addition, for deeper investigation, 

an empirical study is conducted to test the impact of different common classifiers. Experimental results 

show that linear SVM has the best classification performance, compared with, Linear SVM, Logistic 

regression, BernoulliNB, MultinomialNB and Decision Tree  
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