The British University in Egypt
BUE Scholar

Computer Science Informatics and Computer Science

Fall 9-17-2021

A Novel Approach for Smart Contracts Using Blockchain

Dr khaled nagaty
khaled.nagaty@bue.edu.eg

Manar AbdElhamid
The British University in Egypt, Manar.Abdelhamid@bue.edu.eg

Follow this and additional works at: https://buescholar.bue.edu.eg/comp_sci

6‘ Part of the Information Security Commons

Recommended Citation

nagaty, Dr khaled and AbdElhamid, Manar, "A Novel Approach for Smart Contracts Using Blockchain"
(2021). Computer Science. 8.

https://buescholar.bue.edu.eg/comp_sci/8

This Article is brought to you for free and open access by the Informatics and Computer Science at BUE Scholar. It
has been accepted for inclusion in Computer Science by an authorized administrator of BUE Scholar. For more
information, please contact bue.scholar@gmail.com.

https://buescholar.bue.edu.eg/
https://buescholar.bue.edu.eg/comp_sci
https://buescholar.bue.edu.eg/informatics_computer_science
https://buescholar.bue.edu.eg/comp_sci?utm_source=buescholar.bue.edu.eg%2Fcomp_sci%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=buescholar.bue.edu.eg%2Fcomp_sci%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://buescholar.bue.edu.eg/comp_sci/8?utm_source=buescholar.bue.edu.eg%2Fcomp_sci%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bue.scholar@gmail.com

A Novel Approach for Smart Contracts m
Using Blockchain oo

Manar Abdelhamid and Khaled Nagaty

Abstract Despite all the advantages delivered by smart contracts deployed on top of
the blockchain, several challenges are hitting the industry. Blockchain has many secu-
rity and performance issues that need attention. It facilitates the interaction between
two parties who can interact without a third party to accept this transaction. This
leads to the creation of smart contracts that help the blockchain to execute more
efficiently. A smart contract is an executable code that runs on top of the blockchain.
Any modification after execution is not allowed. This causes a problem that is not
solved by many scientists. This paper proposes a solution to this problem by creating
a modifying blockchain that will hold all the modified data to be added to the smart
contract using Ethereum. The proposed solution allows the modification to happen
in a separate blockchain associated with the main blockchain containing the smart
contract. This will result in faster execution, easier modifying and less used storage.
Ethereum used to deploy the blockchain while deploying the smart contract requires
a programing language that supports all the necessary requirements for deployment.
Solidity programing language is used as it provides all the functions and operations
for creation.

Keywords Smart contract + Blockchain - Efficiency - Modifying - Ethereum

1 Introduction

Transactions that occur in any traditional system usually happened in a centralized
way which requires the involvement of a trusted third party [1]. Blockchain is a
decentralized system that exists between all parties, which will lead to no need to
pay intermediaries to help in the process. In other words, blockchains allow untrusted

M. Abdelhamid (X)) - K. Nagaty
The British University in Egypt, Cairo, Egypt
e-mail: Manar.Abdelhamid @bue.edu.eg

K. Nagaty
e-mail: Khaled.Nagaty @bue.edu.eg

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 823
X.-S. Yang et al. (eds.), Proceedings of Sixth International Congress on Information

and Communication Technology, Lecture Notes in Networks and Systems 236,
https://doi.org/10.1007/978-981-16-2380-6_72

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2380-6_72&domain=pdf
mailto:Manar.Abdelhamid@bue.edu.eg
mailto:Khaled.Nagaty@bue.edu.eg
https://doi.org/10.1007/978-981-16-2380-6_72

824 M. Abdelhamid and K. Nagaty

entities to interact with each other in a trusted manner without the involvement of a
trusted third party. Blockchain technology has been invented and modified to tackle
the single point of failure and high transaction fees that occurs in traditional systems
[1]. Simply speaking, a blockchain is a distributed ledger that records all the transac-
tions that occurred in a network. Each network node maintains the distributed ledger,
so each node has a transaction that occurred over the network. The transaction of data
will be executed from one node to another. All inserted information in a blockchain
will be made public and cannot be modified or erased. Applying blockchains help
in saving time and conflict between the systems. They are faster, cheaper and more
secure than the traditional systems, so it is important to convert all traditional systems
to decentralized systems and depend on smart contracts to reduce the paperwork in
order to be more professional and secure. Also, bitcoin, which is a peer-to-peer digital
payment system, is originally introduced by blockchains [2]. Bitcoin is used for a
large decentralized range of applications.

Blockchains replicate and share data between peer-to-peer networks. Blockchains
were initially introduced by Satoshi Nakamto, who developed bitcoin to transfer
digital currencies directly without the need of third parties [3]. In the blockchain,
each block refers to the next block using its address. The blocks are linked together
and executed one after the other without any modification or change. The first block
in the blockchain is called the genesis block [4], which contains no address. As
mentioned, the blockchain has many applications to do transactions; one of them is
smart contracts.

A smart contract is a new concept that has to be deployed on top of the blockchain.
It is an executable code that runs automatically on the blockchain with rules to
facilitate and enforce the terms of agreements between untrusted parties to work
together [5]. The contract is stored on the blockchain like any transaction and runs
its terms without the need of trusted intermediaries [4]. Compared with a traditional
contract, a smart contract does not rely on a third party to trust the operation, and this
results in fast transactions. In the traditional contract, you need a third party and a lot
of paperwork to reach the required result; this will require much effort to reach the data
needed and much time to spend. Blockchains can be applied on different platforms
that help in developing smart contacts. The most common platform to deploy smart
contracts that runs on the blockchain is Ethereum [2]. Ethereum language supports
a complete feature and easy use of smart contracts that allow more creative and
advanced customized contracts [1].

Traditional contracts and paperwork have been a serious problem in wasting
resources in the last decade. Creating smart contracts can help the world and save the
wasted resource and facilitates the process. Smart contract is a program that holds a
set of rules. The smart contract executes its set of agreements. This execution takes
place through Ethereum virtual machine (EVM). Smart contracts are deployed to the
blockchain by submitting a contract creation transaction [4]. Once this transaction
occurred and got accepted, the Ethereum accounts can invoke this contract and its
functions. This invocation happened when the code is totally executed and the trans-
action is sent to the address of the next node [3]. Smart contracts can help in many
fields such as supply chains and in various applications such as voting management

A Novel Approach for Smart Contracts Using Blockchain 825

or health care management systems [5]. The smart contracts work when a set of code
deployed on the blockchain start trigging by the identifier address. This will lead to
total execution of the smart contract by all miners.

The problem that the developers might face during writing smart contracts is
the loss of data and the inability to modify the block with data and much time
spent to fetch the needed information. The goal of this work is to help convert all
the traditional methods and paperwork to smart contract technology. These smart
contracts will provide multiple advantages over the traditional arrangements that can
be classified into three categories:

1. Provide the systems with more accuracy and transparency: this is one of the
most important requirements provided by smart contracts, which help in fasting
the process of extracting any needed information. If the accuracy is high, this
leads to low transaction errors [6]. At the same time, the terms and conditions
of these contracts are fully visible and accessible to all relevant parties, which
helps in a high level of trust.

2. Increase the efficiency: higher efficiencies in the results of the transactions
processed per unit of time. Moreover, higher speed and accurate output will be
provided when using smart contracts [7].

3. Paper-free, easy storage and backup. These contracts record essential details in
each transaction. Therefore, anytime your details are used in a contract, they
are permanently stored for future records, which will lead to a lower amount of
paper used, which removes the need for vast reams of paper. Also, backup all
the information so that it will help in preventing data loss.

A smart contract is an executable code that could be deployed on top of a block
in a blockchain. These contracts have a set of rules that are written using solidity
language. Solidity provides a contract with functions and rules that help a transaction
to meet the needed purpose. The smart contract has many problems that limit its
usage. Identifying the gaps as the inability to modify the contract after the execution
was one of the main problems. The solution presented in the state-of-the-art was
to create another block and copy all the data of the contract into it and finally add
the modified part. This solution leads to inefficient use of storage. Another solution
was to create a template that will be deployed on the contract so that changes will
be available anytime. This solution will need to categorize all the contracts, as one
template will not fit all types of contracts. Therefore, much time and more space will
be consumed.

This paper proposes a different perspective of blockchains and the deployment
of the smart contracts onto them. It is organized as follows: Section 2 discusses all
the previous work problems, how they solved them and the gaps. Section 3 discusses
the proposed solution for modifying smart contracts. Section 4 includes the experi-
mental results and its environment. Section 5 presents the discussion. Finally, Sect. 6
concludes this paper and the future work.

826 M. Abdelhamid and K. Nagaty

2 Related Works

Different research works proposed methods for solving the smart contract deployed
on blockchain issues and its modification. Delmonline et al. [1] discussed the diffi-
culty of writing a smart contract and its correctness and classified them under the
codifying issue. The reason to have the right smart contract is that saving the actions
made for any transaction is very important in order not to lose any data or important
information. If the smart contract is not executed in the right manner, some of its
currency in the transaction will disappear, which leads to the loss of data. Delmonline
et al. [1] tackled this issue by creating a semi-automated smart contract to ease the
process of writing it. In addition to this, this contract will handle the human-readable
contract and turn them into rules for the smart contract. The problem with the semi-
automatized smart contract is that any modification is not allowed because any smart
contract after being deployed over the blockchain will not have the access to modify
the data into it. This will make the smart contract not handy and if any change is
needed will require attaching another copy to the blockchain that will take much
memory. This solution to modify a deployed contract will require duplicating the
space of the block because of adding an extra block to the blockchain to perform the
modification.

Another approach introduced by Marino and Juels [8] is the ability to modify any
smart contract using a pre-defined set of rules or templates. This pre-defined set of
rules will be changed according to the legal law. This standard that is pre-defined
will be then applied to the Ethereum-based smart contract to start compiling with
the contract. The proposed solution by Marino et al. is too vague, as these templates
could not be applied to all categories of contracts as law changes from one category
to another. In other words, if the deployed contract was for health care, all rules and
templates are also applied to the supply chain category. In order to solve this, it is
required to categorize the rules and templates and deploy them all on the blockchain,
which will also use a large amount of memory. So this solution is also inefficient
regarding the space complexity as that of Delmonline et al. [1].

More approaches are introduced to tackle the smart contract transaction-ordering
dependency issue. Natoli and Gramoli [9] mentioned that if having two dependent
transactions that is invoked at the same time to the same contract that is included in
one block, the order of execution of the contract will depend on the miner. This means
if the miner executes a transaction or accepts one before the other, it will cause a loss
of data. So Natoli and Gramoli [9] suggested using the Ethereum-based function.
This function will be responsible for sending and receiving responses to enforce
the order of transactions. This solution will waste time waiting for a response. The
contract’s response depends on the number of functions executed and the time for
execution. So, if the contract is waiting for a response from different functions, this
results in a long execution time, which makes the processing of the contract slow.

Fernandaz et al. [10] concluded that there is an extensive processing time in the
execution of the smart contract as processing requires updating on few centralized
systems with extensive time for processing. This updating will depend on multiple

A Novel Approach for Smart Contracts Using Blockchain 827

parties to execute. Moreover, several functions will need to execute that will lead to
huge costs for data retrieval. Fernandaz’s solution stores the data in each block in the
blockchain in order to retrieve the data from all parties. Therefore, all the data will
be duplicated on each block without any need for it, which consumes a large amount
of memory and much time to retrieve any needed data that will take a long time to
be loaded.

Vukoli¢ [11] introduced another problem which is the smart contracts sequential
execution of the contract. Smart contracts are executed on the blockchain one at
a time. This means that by the time smart contracts increase they will slow the
blockchain performance, as it should wait for each smart contract to execute. This
means that the execution of the smart contracts per second will be very limited on the
blockchain. Vukoli¢ proposed execution of the smart contracts in parallel, as long as
they are independent of each other.

3 Contribution

This paper proposes a modified blockchain associated with the main blockchain
to solve the problems of modification and execution time of smart contracts. As
smart contract after execution could not be modified and the alternative to modify
it will result in more storage usage and extra time for execution, a solution based
on modifying blockchain associated with the main blockchain containing the smart
contract is introduced. The block in the modifying blockchain will point to the block
containing the smart contract in the main blockchain. The main blockchain executes
normally and when it comes to the smart contract, it looks for a modifying blockchain
associated with the smart contract. If a modifying blockchain is found, control goes to
the modifying blockchain to search for the latest modification of this smart contract.
Finally, the smart contract and its latest modification are merged together and the
control returns back to the main blockchain. This will lead to a very easy modification,
much lesser time and much lesser space.

In Fig. 1, one main blockchain has multiple blocks. Each block in the chain will
have different data. In block 2, for example, there is a smart contract that requires
modification. As mentioned above, smart contracts could not be changed or modified,
so a modifying blockchain is created for the smart contract if do not exist, and a new
block that holds the modified data is added to this chain. This data will be ready to
execute whenever the contract needs modification. The main blockchain executes if a
smart contract is found. It looks for a modifying blockchain for the smart contract. If a
modifying blockchain exists, the latest modification is retrieved and connected to the
smart contract in the main block. By using the modifying blockchain, we can modify
a smart contract after execution without duplicating the memory space and with very
low execution time as follows: The main block that contains the smart contract did
not have any changes, thus preserving the main characteristic of the smart contract
which do not allow modification after execution. The proposed modifying blockchain

828

M. Abdelhamid and K. Nagaty

Main Blockchain
Block 1 o Block 2 o Block 3 'R 8|
Smart
Contract
Refertothe
original block

Moditying bloduchen

This fipure thowi the
BloCichan with ore
moddfication biod for
tha 3MAMT COMIMCT

Block1

Modifying
data

Fig. 1 Modified blockchain with smart contract deployed on it

contains modifying blocks that allow modifications to the main blockchain with low

memory space and less execution time.

Figure 2 shows the case if more than one modification took place to the same
contract. The first modification takes place in the first block of the modifying

Main Blockchain

Block 3

Czo| T | <O

"] Block N

Referto the
original block

Modifying
Blockchain

Block 1 Block 2

This figure show the
blockchain with more
than one modification
for the same smart
contract

Fig. 2 Multiple modifying blocks associated with a smart contract in the main blockchain

A Novel Approach for Smart Contracts Using Blockchain 829

blockchain associated with the smart contract. After execution, any modification
could be added by adding another modifying block linked to the previous modifying
block in the chain. This means that many modifications to the smart contract in the
main blockchain can take place without duplicating the main block of the smart
contract in each modification.

Each smart contract should have its own modifying blockchain. This will reduce
the execution time significantly. A smart contract with no modifications has no modi-
fying blockchain. If a smart contract requires modification, a modifying blockchain
is created and associated with the main block containing the smart contract if this
modifying blockchain does not exist. A look-up table contains the address of each
main block containing a smart contract in the main blockchain and the address of the
modifying blockchain associated with it. Note that the address of the first modifying
block is the address of the modifying blockchain. When a smart contract executes, the
main blockchain searches for the look-up table to see if a modifying blockchain for
this smart contract exists. If it exists, then the control is transferred to the modifying
blockchain to retrieve the latest modifications. The average time complexity using
hash is O(1). To speed up the search process, a hash table could be used where the
address of the main block containing the smart contract is input to a hash function and
the output is the location in the hash table containing the address of the modifying
blockchain associated with the main block. If there is an address corresponding to the
address of the main block containing the smart contract, then this main block has a
modifying chain, and if it is null, then this main block has no modifying blockchain.
Using hash tables will make the execution significantly faster (Fig. 3).

In Fig. 4, the chart shows the flow of the blockchain deployed on top of the smart
contract. The execution will be done when a smart contract is found in a block. The
main block that contains the smart contract will search for the look-up table for the
modified data in the modifying blockchain. If a modifying blockchain for this smart
contract exists, then the modifying data is added to the smart contract. If there is
no modifying blockchain associated with that smart contract, the blockchain will
continue with the next main block in the main blockchain.

However, in the traditional blockchain, the execution happened respectively. This
means that each block will execute and the address of it will be sent to the next block
until all the blocks are executed. This means that any changes could not happen.
Modifications will be done by adding new blocks to the blockchain, which will need
the whole blockchain to execute all over again that results in high transactions. In
Ethereum there are three types of execution: financial transfers, message calls and
contract creations. Each one of these types contains basic elements from, to, gas,
value and data [12]. The from and fo functions represent the sender and the receiver.
When the number of functions increases the execution time will increase as well as
the gas (unit to measure the execution in Ethereum) will be consumed. The value is
used to save the amount transferred in any transaction in the blockchain. The data
field is used to hold any data in the blockchain. If any of these fields increase their
usage the execution time will increase. The fee for a transaction with attached data
covers the cost of storing the data permanently in the blockchain and is proportional
to the size of the data [12]. In the modified blockchain, when a smart contract is

830 M. Abdelhamid and K. Nagaty

Main Blockehain

Refer to the
original b
Modifying Madifyi \
o " Liaditring
m —
Modifving
Blockehain
Block 1
J
s

Fig. 3 Multiple modifications to different smart contracts in the main blockchain

created, a particular Ethereum address is subsequently used to interact with that
contract. Then this address will check if any modification is associated with this
block and fetch it. This will lower the transaction waiting time as well as much less
memory will be used [12].

4 Experimental Results

To develop the proposed solution, a set of technologies was chosen. Ethereum is
the most commonly used platform to create and execute smart contracts on the
blockchain. This platform deploys the smart contract and executes its transactions
very easily. To deploy the smart contract on top of the blockchain, solidity is the
language that is used to create it. Solidity is a programing language that provides the
contract with all its functions and operations for transactions.

Ethereum has a blockchain that contains many blocks with different data. These
blocks have data that may contain smart contracts deployed onto them. In Ethereum,
each node has a virtual machine called EVM which could be used to process a
representation of a smart contract. Each block refers to the next one, but once it is
executed, any modification could not be done. In Fig. 5, the structure of the Ethereum
contains many layers. The first layer is the compiling of the smart contract that is

A Novel Approach for Smart Contracts Using Blockchain 831

Blockchain
For (=1, i<n, i)

Yy

Block i + Modifying
data

Fig. 4 Flowchart for modifying smart contract in blockchain

developed using solidity language. The second layer will contain the deployment
method. This deployment will be on top of the main blockchain. These main blocks
will contain many transaction functions, which is data. One of these main blocks
will contain the smart contract that requires modification. These modifications will
be performed through a modifying blockchain that is associated with a pointer to the
main block which contains the smart contract that requires modification in the main
blockchain.

832 M. Abdelhamid and K. Nagaty

Solidity code
(Compiling Smart Contract)

Ethereum Compiler
[Deploy smart contract on the blockchain)

Ethereum virtual Machine (EVM)

Block2 —+» Block3 —» Block4

Fig. 5 Ethereum structure

5 Discussion

Comparing the modifying blockchain approach with the approaches mentioned by
the authors Delmonline et al. [1], Marino and Juels [8] and Natoli and Gramoli [9],
we find that the modifying blockchain consumes less memory and the execution
time will be shorter due to the small number of functions to be executed. Moreover,
the loss of data will be controlled as the modification will not take place in the
original data. All modifications will be done in the modifying block. With this, the
modifying block approach will be less time-consuming and memory-saving than the
state-of-the-art.

6 Conclusion

Smart contracts have issues during implementation. One of these issues is the inability
to modify or change the smart contract after execution. In this paper, we proposed
modifying blockchain to modify smart contracts without losing data, consuming
less memory and less execution time. To illustrate our approach more, modifying
blockchain is conducted to allow the modifying in another block that is associated
with the main block in the main blockchain that has the smart contract as you can’t
do any modification in the smart contract after execution. The modifying blockchain
will be pointing to the main blockchain that has the original data, so whenever the
contract needs these changes point out to it and get the updated version. As a part
of future work, we will study how to create smart contracts on the blockchain with

A Novel Approach for Smart Contracts Using Blockchain 833

different ways of modifications. We will use the hash table to speed up the execution
time of smart contract processing. Also, we are planning to create a new method for
modifying smart contracts using linked lists which provides us with more storage
saving and much less execution time as it will provide a memory space that will hold
the modified data in it.

References

10.
11.

12.

13.

. Delmolino K, Arnett M, Kosba A, Miller A, Shi E (2016) Step by step towards creating

a safe smart contract: lessons and insights from a cryptocurrency lab. In: Lecture notes in
computer science (including subseries Lecture notes in artificial intelligence and Lecture notes
in bioinformatics), LNCS, vol 9604, pp 79-94. https://doi.org/10.1007/978-3-662-53357-4_6.
Bhargavan K et al (2016) Formal verification of smart contracts: short paper. PLAS 2016—
Proceedings of 2016 ACM work programming language analysis for security, co-located with
CCS 2016, pp 91-96. https://doi.org/10.1145/2993600.2993611

Rouhani S, Deters R (2019) Security, performance, and applications of smart contracts: a
systematic survey. IEEE Access 7:50759-50779. https://doi.org/10.1109/ACCESS.2019.291
1031

Lunardi RC, Nunes HC, da Silva Branco V, Lippert BH, Neu CV, Zorzo AF (2019) Performance
and cost evaluation of smart contracts in collaborative health care environments (January 2020)
Aldweesh A, Alharby M, Solaiman E, Van Moorsel A (2019) Performance benchmarking of
smart contracts to assess miner incentives in Ethereum. In: Proceedings of 2018 14th European
dependable computing conference, EDCC 2018, June 2019, pp 144-149. https://doi.org/10.
1109/EDCC.2018.00034

Kosba A, Miller A, Shi E, Wen Z, Papamanthou C (2016) Hawk: the Blockchain model of cryp-
tography and privacy-preserving smart contracts. In: Proceedings of 2016 IEEE symposium
security privacy, SP 2016, pp 839-858. https://doi.org/10.1109/SP.2016.55

‘Watanabe H, Fujimura S, Nakadaira A, Miyazaki Y, Akutsu A, Kishigami JJ (2016) Blockchain
contract: a complete consensus using blockchain. In: 2015 IEEE 4th global conference on
consumer electronics, GCCE 2015, pp 577-578. https://doi.org/10.1109/GCCE.2015.7398721
Marino B, Juels A (2016) Setting standards for altering and undoing smart contracts. In: Lecture
notes in computer science (including subseries Lecture notes in artificial intelligence. Lecture
notes bioinformatics), vol 9718, pp 151-166. https://doi.org/10.1007/978-3-319-42019-6_10

Natoli C, Gramoli V (2016) The Blockchain anomaly. In: 2016 IEEE 15th international sympo-
sium on network computing and applications (NCA), October 2016, pp 310-317. https://doi.
org/10.1109/NCA.2016.7778635

Fernandez C, Hickmott S, Norta A (2020) Tokenizing commercial property with smart contracts
Vukoli¢ M (2017) Rethinking permissioned blockchains [Extended Abstract]. IBM Res 3-7.
https://doi.org/10.1145/3055518.3055526

Rimba P, Tran AB, Weber I, Staples M, Ponomarev A, Xu X (2017) Comparing blockchain
and cloud services for business process execution. In: 2017 IEEE international conference on
software architecture (ICSA), April 2017, Section III, pp 257-260. https://doi.org/10.1109/
ICSA.2017.44

Tian Y, Lu Z, Adriaens P, Minchin RE, Caithness A, Woo J (2020) Finance infrastructure
through blockchain-based tokenization. Front Eng Manag. https://doi.org/10.1007/s42524-
020-0140-2

https://doi.org/10.1007/978-3-662-53357-4_6
https://doi.org/10.1145/2993600.2993611
https://doi.org/10.1109/ACCESS.2019.2911031
https://doi.org/10.1109/EDCC.2018.00034
https://doi.org/10.1109/SP.2016.55
https://doi.org/10.1109/GCCE.2015.7398721
https://doi.org/10.1007/978-3-319-42019-6_10
https://doi.org/10.1109/NCA.2016.7778635
https://doi.org/10.1145/3055518.3055526
https://doi.org/10.1109/ICSA.2017.44
https://doi.org/10.1007/s42524-020-0140-2

	A Novel Approach for Smart Contracts Using Blockchain
	Recommended Citation

	 A Novel Approach for Smart Contracts Using Blockchain
	1 Introduction
	2 Related Works
	3 Contribution
	4 Experimental Results
	5 Discussion
	6 Conclusion
	References

