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Ritesh Khire and Prabhat Hajela 

Department of Mechanical, Aerospace and Nuclear Engineering 

Rensselaer Polytechnic Institute, Troy, NY 12180, USA 

As part of an ongoing effort to model uncertainty propagation across multiple scales in 

fibrous laminates, this paper presents a deterministic transformation field analysis for 

modeling damage progression under membrane forces and bending moments. In this 

approach, equivalent eigenstresses are computed in the phases and/or plies such that their 

respective stress components which satisfy the underlying failure criteria are reduced to 

zero. Superposition of the solutions found for fiber the undamaged laminate under applied 

loads and under the eigenstress field provide the entire response. Failure criteria are based 

on stress averages in the and matrix. Damage mechanisms considered are frictional sliding 

and splitting on matrix planes which are parallel to the fiber direction, and fiber breakage. 

Model predictions correlate well with published experimental measurements for the stress-

strain response as well as failure envelope.    

Nomenclature 

rA  = strain concentration factors of a phase 

rB  = stress concentration factors of a phase 

rsD  = strain influence functions of a phase 

E = Young’s modulus 

G = Shear Modulus  

rsF  = stress influence functions of a phase 

I  = identity matrix 

L  = elastic stiffness matrix 

M  = elastic compliance matrix 

M  = bending moment 

N  = membrane forces 

iN  = strain transformation matrix of a lamina 

iP  = stress concentration factor matrix of a lamina due to force 

iQ  = stress concentration factor matrix of a lamina due to moment 

iR  = stress transformation matrix of a lamina 

ijU  = stress influence functions of a lamina 

c = lamina volume fraction 

h = laminate thickness 

n = number of plies 

t = lamina thickness 

v  = phase volume fraction 
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ij  = Kronecker’s delta 

  = strain 

  = coefficient of friction 

  = curvature 

  = eigenstress 

  = eigenstrain 

 = Poisson's ratio 

  = stress 

u  = ultimate normal strength 

u  = ultimate shear strength 

  = fiber orientation angle 

 

I. Introduction 

HE inclusion of uncertainty and risk in the simulation-based optimal design of structural composites requires an 

integrated approach which models these effects in mechanistic models of deformation and damage. To depart from 

deterministic design approaches in which the mechanistic models are linked to formal mathematical methods of 

optimization, multiscale probabilistic models that yield a hierarchical description of initiation and propagation of 

damage as well as inelastic deformations in composite structural systems are presently pursued1,2. 

 An essential element of this approach is a computationally tractable formulation of the composite analysis 

problem that takes into consideration the inherent multiscale nature of the problem. The modeling of failure in 

composite materials however often treats the material as macroscopically homogeneous and examines overall failure 

criteria without reference to progression of damage. This is primarily due to the lack of mathematical models, which 

link the overall response to the local phenomena, despite the extensive information available for the latter including 

experiments and constitutive theories. 

 Attempts to relate local damage to the overall behavior of composite materials and to structural components by 

mathematical and/or computational models are few, and relatively new. A class of models in this direction centers 

on the transformation field analysis (TFA) approach, which evaluates interactions between the various deformation 

and damage mechanisms in composite or polycrystalline aggregates. Originally developed and implemented in 

analysis of composites with viscoelastic, viscoplastic and elastic-plastic phases3,4,5, the method has seen recently 

direct applications to describe damage events such as reinforcement debonding in two phase composites6, fiber 

debonding and sliding in fibrous composites7,8 and in laminates9, and internal damage modes in woven composites10, 

as well as utilization in homogenization techniques11,12,13,14. In principle, the method evaluates interaction of applied 

T 
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and residual stress and strain fields caused by distributions of eigenstrains in heterogeneous solids. Regardless of 

their origin, the TFA regards such transformation strains as distributed internal loads that act on an otherwise 

undamaged elastic composite aggregate. 

 This paper develops a TFA approach for fibrous laminates of a general layup under membrane forces and 

bending moments as well as local eigenstress fields. The latter is introduced to model the effect of damage in the 

fiber and matrix on the strain and curvature of the laminate. Mechanical behavior of unidirectional plies was 

modeled with a two-phase, averaging material model, and the laminate deformations were assumed to follow the 

Kirchhoff idealization. The paper is organized as follows; Section II describes geometry, material and load. 

Micromechanics of a unidirectional fibrous lamina is described in Section III, and macromechanics of laminates is 

given in Section IV. The TFA approach is developed in Section V followed by description of the failure criteria in 

Section VI. Results, which compare the model predictions with experimental measurements, are given in Section 

VII. The paper concludes with a closure in Section VIII, which summarizes the work performed and discusses 

related issues that can benefit from future research. 

 The notation used here are symbolic, where symmetric second-order tensors are written as (6x1) matrices and 

denoted by boldface, lower case letters, and symmetric fourth-order tensors are written as (6x6) matrices and 

denoted by boldface, upper case letters. Connections with tensor notation are easily established. For example, the 

stress tensor ij , and strain tensor ij , with the symmetry ij ji=  , ij ji=  , are written in matrix form as 

[ , ] =            , and [ , 2 2 2 ] =               . Similarly, fourth-order tensors having at 

least the symmetries ijkl jikl ijlkA A = A=  are reduced to (6x6) matrices A , such that 1 1− −= =AA A A I , the identity 

matrix. 

II. Geometry, Material and Load 

The fibrous laminate under consideration consists of N fully bonded thin elastic plies, Fig. 1. The ply thickness is 

denoted it , 1,2,..,i n= , such that = it h , the total thickness of the laminate. Hence, /=i ic t h  is the volume 

fraction of ply ‘i’, such that 1ic = . Two coordinate systems are defined as shown in Fig. 1, one is overall ( jx , 

1,2,3j = ), and one is local ( kx , 1,2,3k = ). The latter coincides with material principal axes of a unidirectional 

composite lamina. Fiber orientation of ply ‘i’ is given by angle i  between the local 1x  and the overall 1x  axes. 
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Both membrane forces, [ , , ]=   N N N N , and bending moments, [ , , ]=   M M M M , are considered. Let 

ˆ ˆ ˆ ˆ( ) [ , , ]z =       denote in-plane stresses caused in the laminate, where 3z x  denote the distance across the 

laminate thickness, measured from the geometric mid-plane 
1 2x x , Fig. 1.  Hence, 

 

2/ 2

1/ 2 2

ˆ ˆ( ) ( )

+

=− −

 
= =  

 
 

 
i i

i i

z th n

ih z t

z dz z dz N , (1) 

 

2/ 2

1/ 2 2

ˆ ˆ( ) ( )

+

=− −

 
= =  

 
 

 
i i

i i

z th n

ih z t

z z dz z z dz M , (2)                    (2) 

where iz  is the 3x  coordinate of the mid plane of lamina ‘i’. 

Properties of the unidirectionally reinforced plies are given in terms of elastic moduli of the fiber (f) and matrix 

(m) materials, and their volume fractions, ,f mv v , where 1f mv v+ = . The matrix is assumed to be isotropic with 

Young’s modulus mE  and Poisson’s ratio m . The fiber is transversely isotropic with 1x  as the axis of rotational 

symmetry, 
f

LE  and 
f

TE  the longitudinal and transverse Young’s moduli, 
f

L  and 
f

T  the associated Poisson’s ratios, 

and 
f

LG  the longitudinal shear modulus. Consequently, the unidirectional plies are transversely isotropic with 

overall elastic properties analogous to those of the fiber; LE , TE , L , T , LG . The overall properties can be either 

measured or computed from the local properties using a micromechanical model15. When certain fiber properties are 

difficult to measure, they can be back calculated from a material model and the measured overall properties as well 

as those of the matrix16. 

III. Ply Micromechanics 

Consider a two phase composite with known fiber and matrix elastic properties and volume fractions as detailed 

above. The local stresses and strains vary pointwise but will be approximated by the average fields in the fiber and 

matrix. Let r  and r , ,r f m= , denote the stress and strain averages in the fiber and matrix, and   and   denote 

uniform overall stresses and strains. In general, these stress and strain vectors contain six independent components. 

The reference coordinate system for both the local and overall fields of a unidirectional composite is the material 

principal axes kx , 1,2,3k = , Fig. 1. The local and overall fields are related by 
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 f f m mv v  = + ,     f f m mv v  = + . (3)            

Constitutive equations of the phases subjected to r , or r , and simultaneously supporting uniform 

transformation, or eigen, stress 
r , or strain 

r , are written as 

 r r r r  = +L ,     r r r r  = +M , (4)  

where 
rL  and 1

r

−=
r

M L  are elastic stiffness and compliance. The transformation stress and strain are related by 

r r r = −L , and represent fields that are either intrinsic and cannot be recovered by mechanical unloading such as 

thermal and plastic strain, or introduced as auxiliary fields. 

Similarly, constitutive equations for a composite lamina subjected to overall uniform strain  , or stress  , and 

uniform transformation stress  , or strain  , are written in the material principal axes kx  as 

   = +L ,       = +M , (5) 

where L  and 1−=M L  are overall elastic stiffness and compliance, and  = −L . 

The connection between the local strain and stress fields and their overall counterparts are found by 

superposition of mechanical and transformation field contributions3, 

 
,

r r rs s

s f m

  
=

= + A D ,     
,

r r rs s

s f m

  
=

= + B F ,     ,r f m= . (6) 

Here, rA  and rB  represent strain and stress concentration factors for the fiber and matrix17,18, and rsD  and rsF  are 

transformation influence functions. Both the concentration factors and the transformation influence functions depend 

on mutual constraints of the phases and their elastic moduli. Closed forms for the concentration factors and 

influence functions can be found for two-phase models of fibrous composites17,19. 

If the concentration factors rA  and rB  are known, one can find from Eqs. (3)-(6), in the absence of 

transformation fields, the overall elastic stiffness and compliance in the form 

 
f f f m m mv v= +L L A L A ,     

f f f m m mv v= +M M B M B . (7) 

The overall transformation stress and strain are given in terms of their local counterparts by the generalized 

Levin’s20 formula4, 
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 T T

f f f m m mv v  = +A A ,     T T

f f f m m mv v  = +B B . (8) 

If only in-plane stresses are of interest, the stress-strain relations (5) assume the following form 

 
ˆˆ ˆ̂  = +L ,     ˆˆ ˆ ˆ  = +M , (9) 

where symbols decorated with a top hat (^) indicate quantities associated with in-plane loads, such that 

 ˆ , ,=       and  ˆ , ,2=      . Matrices ˆ
iL  and 1ˆ ˆ

i i

−=M L  are stiffness and compliance associated with 

plane stresses, and ˆ
i  and 

ˆ ˆ ˆ
i i i = −L  are in-plane transformation strain and stress. 

The overall stiffness matrix ˆ
iL  of a transversely isotropic lamina is given by21 

 1

2 0
1ˆ ˆ2 4 0

0 0 ( )

L

i i

E k mn m

m km
k m p k m

−

+ 
 

+  + 

L M= = , (10) 

where , ,k m,n, p  are Hill’s moduli22. They are related to the engineering moduli by 
2 /LE n k= − , / 2L k = , 

/ 2(1 )T T Tm G E= = +  , Lp G= . 

When expressed in the overall coordinate system jx , 1,2,3j = , Eq. (9) is written for ply ‘i’ as 

 ˆˆ ˆˆ
i i i i  = +L ,     ˆˆ ˆ ˆ

i i i i  = +M , (11) 

where 1ˆ ˆ
i i

−=M L , ˆ ˆ ˆ
i i i = −L , and21 

 ˆ ˆ
i i i = R ,     ˆ ˆ

i i i = N , (12) 

 
ˆ ˆ
i i i = R ,     ˆ ˆ

i i i = N , (13) 

 ˆˆ T

i i i i=L N L N ,     ˆˆ T

i i i i=M R M R , (14) 

 

12 2

2
11 2 2

2

cos sin sin 2

sin cos sin 2

sin 2 sin 2 cos2

i i i

T

i i i i i

i i i

−

 −
 

= =  
− 

 

R N

  

  
  

,  

12 2

2
12 2

2

cos sin sin 2

sin cos sin 2

sin 2 sin 2 cos2

i i i

i i i i

i i i

−

 
 

=  
− 

 

N

  

  
  

, (15) 

and i  is the angle between the local 1x -axis and the overall 1x -axis, Fig. 1. 
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Finally, the in-plane stresses, 
11 , 

22 , 
12 , of a ply are identified with the components of the full, six 

dimensional stress vector using the mapping matrix ˆ ( , , )1 2 6=I i i i , where ki  is a column vector of order (6x1) with 

the thk  entry equals one, and null entries otherwise.  For example, the stresses in ply ‘i’ referred to the local 

coordinate system are written as 

 ˆ ˆ
i i = I ,     ˆˆ T

i i = I . (16) 

Similar equations can be written for the ply stresses referred to the overall coordinate system, and also for the ply 

eigenstresses.  

IV. Laminate Macromechanics 

We now consider a fibrous laminate with the geometry and load described in Section II. Considering thin 

laminates, transverse shear deformations are negligible, and the in-plane strains ˆ ˆ ˆ ˆ( ) [ , ,2 ]z =       are assumed to 

vary linearly across the thickness with the 3x z  coordinate. Hence, 

 ˆ( ) oz z  = + , (17) 

where [ , ,2 ]o =   

      is the strain at the mid-plane of the laminate, and [ , , ] =       is the curvature with 

respect to the mid-plane. 

Substituting Eq. (9)1 into Eqs. (1) and (2), and utilizing Eq. (17), the load-response relations for the laminate can 

be written as 

 o = + +A B fN ,     o = + +B D gM , (18) 

where 

 
1

ˆ

=

= 
n

i i

i

tA L ,     ( )
1

ˆ

=

= 
n

i i i

i

t zB L ,     
2 2

1

1 ˆ
12=

 
= + 

 


n

i i i i

i

t t zD L , (19) 

 
1=

= 
n

i i

i

tf  ,     ( )
1=

= 
n

i i i

i

t zg  . (20) 

The first two terms of Eq. (18) are due to mechanical loading. Coupling between membrane and bending 

deformations is expressed in terms of array B, which vanishes for symmetric laminates.  Arrays f  and g are eigen-
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force and moment caused by eigenstresses present in the plies, such as those developed due to thermal strains, when 

the laminate is fully constrained. 

The inverse relations can be found from Eqs. (18)-(20) as 

 o   = + +A B fN M ,        = + +C D gN M , (21) 

where 

 
1( ) − = −A I B B A ,   1− = −B A BD ,   1− = −C D BA ,     1 1[ ]− − = −D D BA B , (22) 

   = − −f B g A f ,       = − −g C f D g . (23) 

Arrays f  and g  are overall eigen-strain and curvature.  

In general, six transformation stress components can occur in a lamina. However, only the in-plane components 

 ˆ , ,i 11 22 12 =     cause in-plane stresses in the perfectly bonded plies. The out-of-plane transformation strains 

caused in the plies can be accommodated without introducing additional in-plane stresses. The lamina stresses 

caused by mechanical loads, N  and M , together with the lamina transformation stresses can then be written as the 

sum of the individual contributions, 

 
1

ˆˆ
n

i i i ij j

j


=

= + + P Q U λN M ,     1,2,..,i n= , (24) 

Matrices iP  and iQ , , 1,2,..,i j n= , are stress distribution factors, and ijU  is stress transformation influence 

function.  

In the absence of ply eigenstresses, the distribution factors are found by averaging the in-plane strain of Eq. (17) 

over the ply thickness, utilizing (21), and substituting the result in Eq. (11). The result is 

 ( )ˆ  = +i i izP L A C ,     ( )ˆ  = +i i izQ L B D . (25) 

The influence function ijU  can be recovered from the same procedure if ply eigenstresses are present. 

Alternately, they can be found by first introducing an eigenstress ˆ
j  in ply ‘j’ of a laminate, which is otherwise free 

from stresses. The equilibrating overall forces and bending moments are then found from Eqs. (1) and (2) as 
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2

1 2

ˆˆ ( )

+

= −

 
= = 

 
 

 
i i

i i

z tn

j j

i z t

z dz t Ν ,     ( )
2

1 2

ˆˆ ( )

+

= −

 
= = 

 
 

 
i i

i i

z tn

j j j

i z t

z z dz t z M . (26) 

Finally, the forces and bending moments of Eq. (26) are removed and the ply stresses due to ˆ
j  are computed as the 

sum of the contributions found in this loading sequence. Transformation influence functions of a ply are then found 

as 

 ( )= − −ij ij j i j j it t zU I P Q . (27) 

where ij  is the Kronecker's tensor, and I is identity matrix. 

Certain identities can be recovered for the stress distribution factors when, in the absence of eigenstresses, Eq. 

(24) is utilized in the equilibrium equations, Eqs. (1) and (2), and the stress is averaged over the ply thickness.  The 

result is 

 
1

n

i i

i

t
=

= P I ,     
1

n

i i

i

t
=

= Q 0 ,     ( )
1=

=
n

i i i

i

t z P 0 ,     ( )
1=

=
n

i i i

i

t z Q I . (28) 

Since stress averages are used in deriving Eqs. (28), these identities will be satisfied, within a small tolerance, if the 

plies are fairly thin.  In this case, subdividing the individual laminas into several layers results in a better resolution 

of the stress distribution, and hence accurate prediction of the overall response.  This, in particular, is important 

when curvature of the laminate does not vanish and ply failure is of interest since the associated criteria are based on 

stress averages. 

V. Transformation Field Analysis 

The schematic of Fig. 2 shows the relationships derived in Sections III and IV between stresses in the fiber and 

matrix of a lamina, the individual plies, and the laminate. It illustrates how the TFA approach propagates the effects 

of local phenomena, quantified by eigenstresses, f , m  in the fiber and matrix, and/or ˆ
i  in the individual plies, 

across multiple length scales. In preparation for applying the method to damage, we derive here equations for ply 

and phase stresses in terms of the applied loads and the eigenstresses. 
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Referring to material principal axes of a ply, the lamina overall stresses caused by the applied loads N and M , 

and ply eigenstresses 
ˆ

jλ , 1,2,..,j n= , can be found from Eq. (24) and the stress transformation rules of Eqs. (12) 

and (13).  The result is 

 
1

ˆˆ
n

T

i i i i ij j j

j


=

 
= + + 

 
R P Q U N λN M ,     1,2,..,i n= . (29) 

In treating failure in fibrous plies (Section VI), a mixed formulation is used in which axial, normal eigenstresses, 

f

11 , m

11 , are introduced in the fiber and matrix, while transverse normal and longitudinal, in-plane shear 

eigenstresses are introduced in the ply. Denoting the latter by 
*

22  and 
*

12  and utilizing Eqs. (8) and (16) to 

determine the contribution of the axial eigenstress in the phases to the ply eigenstress, Eq. (29) is rewritten as 

 ( )

( )
( ) ( )

* ( ) ( )

1
* ( ) ( )

ˆ

j
f f m m

f 11 11 m 11 11
N

T f f m m

i i i i i ij j 22 f 12 11 m 12 11

j
f f m m

12 f 16 11 m 16 11

v A v A

v A v A

v A v A
=

 +
 

= + + + + 
 

+ + 

σ R P Q R U N

 

  

  

N M ,     1,2,..,i n= , (30) 

where 
( )r

r klAA  is strain concentration matrix of phase ‘r’.  The first term in Eq. (30) provides the ply stress caused 

by the applied loads. The second term indicates the effect of directly applied ply eigenstresses as well as those 

caused by phase eigenstresses due to imposition of equal in-plane strain condition on the fully bonded plies. 

The phase stresses are given by Eq. (6)2 in terms of the full stress vector of the ply in local coordinates and the 

phase eigenstresses. Again considering only axial, normal eigenstresses in the matrix and fiber, and reducing the full 

stress vectors to their in-plane counterparts using Eq. (16), the phase stresses in ply ‘i’ can be written as 

 ( ) ( ) ( ) ( )ˆˆi i f rf m rm

r r i 11 1 11 1= + +σ B Iσ f f  ,     ,r f m= , (31) 

where 
( ) ( )( ,.., )rs rs

rs 1 6=F f f is stress transformation influence function. Substituting for the ply stresses from Eq. (30), 

we find 

( )

( )

( )
( ) ( )

( ) ( ) ( ) * ( ) ( )

1 * ( ) ( )

( )
( ) ( )

ˆ ˆ

     ,      , .

j
f f m m

f 11 11 m 11 11N
i i i T f f m m

r r i i i r i ij j 22 f 12 11 m 12 11

j f f m m

12 f 16 11 m 16 11

i
f rf m rm

11 1 11 1

v A v A

v A v A

v A v A

r f m

=

 +
 

= + + + + 
 + + 

+ + =

σ B IR P Q B IR U N

f f

 

  

  

 

N M
, (32) 
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The first term in Eq. (32) provides the local stress caused by the applied loads. The last two terms represent the 

local stress caused in the fiber and matrix of lamina ‘i’ by eigenstresses found in the plies as well as those found in 

their fiber and matrix phases. These represent two effects, one due to the constraints introduced by the assumption of 

fully bonded fiber and matrix in lamina ‘i’, and one due to the assumption of fully bonded laminas which forces the 

in-plane strains of the plies to be equal. 

In utilizing Eq. (30) and/or Eq. (32) to model local damage in fibrous laminates, the scheme developed by Bahei-

El-Din et al.10 is applied. It centers on finding an auxiliary transformation stress field in the plies and/or their fiber 

and matrix phases such that the magnitude of the corresponding net stress components, which violate the underlying 

failure criteria are zero. Hence, brittle failure is implied and is expected to prevail for example in polymer matrix 

composites. This is achieved by first finding the stresses in an undamaged laminate subjected to a given overall load 

using the first term of Eqs. (30) and (32). Next, the relevant failure criteria are examined for all plies, and the 

violating stress components are identified. Finally, setting the violating stress components to zero in the left hand 

side of Eqs. (30) and (32), the eigenstresses can be computed by inverting the resulting algebraic equations. Since 

the computed eigenstress field will alter the stresses in the undamaged plies, the process is repeated until no further 

damage is found under the applied overall loads. 

The response under a given overall stress path is found by updating the overall load by small increments and 

repeating the transformation field analysis under the entire applied load. Local stress components marked for 

violating the failure criteria in previous loading steps are included in the process for determining the auxiliary 

eigenstress field such that the history of previous damage is accounted for. 

VI. Failure Criteria 

Two classes of failure criteria are considered for a fibrous lamina and their effect on the predicted overall 

response of laminates is quantified in the next section, one is macromechanical and one is micromechanical. In the 

macromechanical approach, failure is examined in terms of the overall, in-plane stress of a ply, σ̂ , referred to the 

material principal coordinates. In this case failure is indicated when the stress state is contained by a failure 

envelope, 

 ˆ( ) 0f =σ . (33) 
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For example Eq. (33) can be represented by the failure envelope proposed by Tsai and Wu23. If the stresses 

ˆ ( , , )11 22 12=σ     caused in an undamaged ply ‘i’ by the applied loads satisfy Eq. (33), we seek eigenstresses 

* * * *ˆ ( , , )i 11 22 12λ λ λ=λ  such that ˆ =σ 0 .  Solution of this problem is obtained from Eq. (30). Hence, this approach is 

equivalent to the ply discount method applied by O’Brien24. 

In the micromechanical approach, the onset of failure is determined based on the stress state found in the fiber 

and matrix. In the present work, averaging models are utilized to evaluate the local stresses. Hence, the average 

phase stresses in the undamaged state are given by the first term of Eq. (32) where, under the laminate geometry 

considered here, four stress components may in general exist, ( ) ( ) ( ) ( ), , ,r r r r

11 22 33 12    , ,r f m= . 

Failure under axial stress 
( )r

11  occurs when the stress magnitude equals the ultimate strength.  To account for 

different strength magnitudes under tensile and compressive stresses, the respective values are denoted by 
( )r

uT  and 

( )r

uC  , and the failure criterion is written as 

 
( ) ( )r r

11 uT=     if   
( ) 0r

11  ,     
( ) ( )r r

11 uC=     if   
( ) 0r

11  ,     ,r f m= , (34) 

 

and the eigenstress sought from Eq. (32) to remove the axial stress in the phase is 
r

11 . It is assumed in the 

subsequent results, however, that the phase strength magnitudes under axial tension and compression stresses are 

equal. 

Under transverse normal stresses, matrix failure may occur by slip on planes parallel to the fiber when the 

resolved shear stress exceeds the ultimate shear strength of the matrix.  The slip direction in this case is transverse to 

the fibers.  Considering frictional slip, failure criterion of the matrix in this case can be written as, 

 1 1
2 2

m m m m m

33 22 T 33 22 u    − + + = , (35) 

where T  is coefficient of friction for matrix slip in the transverse direction, x x=  if x 0 , and x 0=  if x 0 . 

We note that consideration of friction provides a mean for distinction between tensile and compressive failure. An 

entirely different failure mode which may occur in the matrix is transverse cracking under tensile stresses, or 

compressive failure.  The limiting conditions in this case are, 

 22

m m

uT=     if   22 0m  ,     22

m m

uC=     if   22 0m  . (36) 
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Since inability of the matrix to transmit transverse stress implies failure of the ply under transverse loading, we 

require 22  in Eq. (30) to vanish by introducing eigenstress 22

  if either Eq. (35) and/or Eq. (36) are satisfied.  

Under longitudinal shear, matrix failure may occur by slip in the longitudinal direction on planes parallel to the 

fiber. Considering again frictional slip, the onset of failure is written as 

 m m m

12 L 22 u  + = , (37) 

where 
L  is coefficient of friction for matrix slip in the longitudinal direction. Here too, this failure mode implies 

inability of the ply to support shear loading, and as such we require 12  in Eq. (30) to vanish by introducing 

eigenstress 12

 . 

Since ply strength is matrix-dominated under transverse loads and shear stresses, no failure criteria are specified 

under these stress components for the fiber. We note however that these stresses will vanish in the fiber when the 

matrix fails and the ply stresses accordingly vanish. This of course is a consequence of the two-phase, averaging 

models of fibrous composites that are utilized here. 

VII. Results 

Mechanical behavior of fibrous laminates tested by Soden et al.25,26 was predicted with the multiscale TFA 

model described above.  Two composite systems are considered; AS4 carbon/epoxy and Silenka E-glass/epoxy.  

Mechanical properties of the fibers and two types of epoxy matrices are given in Tables 1 and 2.  Mechanical 

properties of the unidirectional composites are given in Table 3 and their ultimate strength magnitudes are given in 

Table 4.  Also shown in Table 3 are elastic moduli of the unidirectional composites as predicted by the Mori-Tanaka 

averaging model27.  We note that certain strength properties of the DY063 epoxy listed in Table 2, which are not 

available from experiments have been back calculated by matching the overall strength given in Table 4 and using 

the failure criteria of Section VI.  For example, the matrix ultimate strength under tension and compression are 

computed from their overall counterparts under transverse loading of a unidirectional lamina by utilizing Eq. (36).  

For E-glass/DY063-epoxy, the overall strength measured under uniaxial transverse tensile load is 40 MPa22 =  

(Table 4), and the matrix stress concentration factor, Eq. (6)2, given by the Mori-Tanaka model27 under this load is 

0.793=m

22B .  Hence, the tensile strength of the matrix is computed as 31.72 MPa=m m

u 22 22= B   (Table 2).  Using 
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the same concentration factor and the measured overall compressive strength under transverse load of 145 MPa 

provides the ultimate compressive strength of the matrix as 115 MPa. 

Under longitudinal shear, the E-glass/DY063-epoxy composite fails at 73 MPa12 =  (Table 4).  With a Mori-

Tanaka stress concentration factor 0.635=m

12B , the matrix ultimate strength in shear is computed as 46.35 MPa 

(Table 2).  The longitudinal coefficient of friction 
L  is determined from a combined transverse 

compression/longitudinal shear test.  From Table 4, we find 70.5 MPa22 = −  and 96.6 MPa12 = .  With these 

overall strength magnitudes, and the above stress concentration factors under transverse normal and longitudinal 

shear stresses, 
m

22B  and 
m

12B , Eq. (37) provides 0.268L =  (Table 2). 

Figures 3 and 4 compare the predicted and measured stress-strain responses for two laminates, ( )
s

90/ 45/0  

AS4-carbon/3501-6-epoxy, and ( )
s

45  E-glass/DY063-epoxy.  Figure 5 compares failure envelopes of the quasi-

isotropic laminate in the biaxial stress plane.  Close agreement between the experimental measurements and the 

micromechanics-based TFA predictions are seen in all figures, while prediction of the ply-discount approach 

underestimates the overall strength by a substantial margin.  The onset of damage modes predicted by the TFA is 

indicated by the numbered circles in Figs. 3 and 4 and the table insert.  Damage in the carbon/epoxy quasi-isotropic 

laminate, which is primarily loaded along the 90o plies, is initiated in the matrix of the 0o ply in the form of 

longitudinal splitting due to exceeding the normal strength, Fig. 3.  This is followed by shear failure of the matrix in 

the 45o plies.  Ultimate failure of the laminate is triggered by breakage of the fibers in the 90o plies. 

Damage in the E-glass/epoxy, (±45)s laminate is also initiated by longitudinal splitting of the matrix due to 

exceeding its normal strength in the transverse direction in all plies, followed by failure on matrix transverse planes, 

Fig. 4.  Ultimate failure of the laminate is caused by shear failure of the matrix in all plies.   We note that the 

theoretical predictions provide equal overall normal strains as expected under the applied load.  On the other hand 

unequal strain magnitudes are found in the experiment, which is indicative of possible misalignment of the fiber 

orientations. 

Finally, it is seen from Fig. 5 that the strength magnitudes which are measured experimentally26 for the 

carbon/epoxy, quasi-isotropic laminate scatter around the predicted envelope. 
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VIII. Closure 

Modeling progressive damage in fibrous laminates is essential for reliable predictions of their behavior and 

ultimate loads.  The transformation field analysis described in this paper provides a rigorous approach for evaluation 

of the effect of failure initiated in the constituents on the local fields and overall response of laminates subjected to 

membrane and bending loads.  Both the micromechanical model employed to represent the individual fibrous 

laminas and the local failure models affect the predictions.  In the present work, averaging models of fibrous 

composites have been utilized.  More refined, unit cell models are expected to provide a more gradual progression of 

damage in contrast to the abrupt changes in the overall strains seen in damage predictions based on averaging 

models.  Computational cost of the former models however is expected to be rather high particularly in uncertainty 

designs of composite panels28. 

Acknowledgments 

This work was supported by a grant from the Air Force Office of Scientific Research, Directorate of Aerospace 

and Materials Sciences. Dr. B.L. Lee, Program Manager, Mechanics of Materials and Devices, served as project 

monitor. This work was performed at Rensselaer Polytechnic Institute while YAB was a visiting professor. 

References 

1 Bahei-El-Din Y.A., Mullur, A. A., Hajela, P., Peters, J., and Dvorak, G.J., “Nondeterministic Modeling of Progressive 

Failure in Laminated Composites,” 2nd Multidisciplinary Design Optimization Specialist Conference, AIAA-2006-2144, 

Newport, RI, May 2006. 

2 Khire, R., Bahei-El-Din, Y.A., and Hajela, P., “Uncertainty Propagation in Multiscale Transformation Field Analysis of 

Laminated Composites,” 3rd AIAA Multidisciplinary Design Optimization Specialist Conference, Honolulu, Hawaii, April 2007. 

3 Dvorak, G. J., “Transformation Field Analysis of Inelastic Composite Materials,” Proceedings of the Royal Society London, 

Vol. A437, 1992, pp. 311–327. 

4 Dvorak, G.J. and Benveniste, Y., “On Transformation Strains and Uniform Fields in Multiphase Elastic Media,” 

Proceedings of the Royal Society London, Vol. A437, 1992, pp. 291–310. 

5 Dvorak, G.J., Bahei-El-Din, Y.A., and Wafa, A.M., “Implementation of the Transformation Field Analysis for Inelastic 

Composite Materials,” Computational Mechanics, Vol. 14, 1994, pp. 201-228. 

6 Dvorak, G.J. and Zhang, J., “Transformation field analysis of damage evolution in composite materials,” Journal of the 

Mechanics and Physics of Solids, Vol. 49, 2001, pp. 2517-2541.   



 
International Journal for Multiscale Computational Engineering, V. 8, No. 1, pp. 69–80, 2010 

 16 

7 Dvorak, G.J. and Sejnoha, M., 1995, “Initial Failure Maps of Fibrous CMC Laminates,” Journal of the American Ceramic 

Society, Vol. 78, 1995, pp. 205-210. 

8 Bahei-El-Din, Y.A., "Finite Element Analysis of Viscoplastic Composite Materials and Structures," Mechanics of 

Composite Materials and Structures, Vol. 3, 1996, pp. 1-28. 

9 Bahei-El-Din, Y.A. and Botrous, A.G., “Analysis of Progressive Fiber Debonding in Elastic Laminates,” International 

Journal of Solids and Structures, Vol. 40, 2003, pp. 7035-7053. 

10 Bahei-El-Din, Y.A., Rajendran, A.M., and Zikry, M.A., “A Micromechanical Model for Damage Progression in Woven 

Composite Systems,” International Journal of Solids and Structures, Vol. 41, 2004, pp. 2307-2330. 

11 Fish, J., Yu, Q., and Shek, K.L., “Computational Damage Mechanics for Composite Materials Based on Mathematical 

Homogenization, International Journal of Numerical Methods in Engineering, Vol. 45, 1999, pp. 1657-1679. 

12 Chaboche, J.L., Kruch, S., Maire, J.F., and Pottier, T., “Towards a Micromechanics Based Inelastic and Damage Modeling 

of Composites,” International journal of Plasticity, Vol. 17, 2001, pp. 411-439. 

13 Michel, J.C. and Suquet, P., “Computational Analysis of Nonlinear Composite Structures Using the Nonuniform 

Transformation Field Analysis,” Computer Methods in Applied Mechanics and Engineering, Vol. 193, 2004, pp. 5477-5502. 

14 Oskay, C. and Fish, J., “Eigendeformation-Based Reduced Order Homogenization for Failure Analysis of Heterogeneous 

Materials,” Computer Methods in Applied Mechanics and Engineering, Vol. 196, 2007, pp. 1216-1243. 

15 Bahei-El-Din Y.A. and Dvorak, G.J., “Micromechanics of Inelastic Composite Materials,” Comprehensive Composite 

Materials, A. Kelly and C. Zweben, Editors-in-Chief, Chapter 15 in Volume 1: General Theory of Composites, edited by T.-W. 

Chou, Elsevier Science B.V., Amsterdam, 2000. 

16 Chuang, S.-N., “Probabilistic Analysis in Unidirectional Fiber-Reinforced Composite Material Design Screening,” 

SAMPE, San Diego, CA, November 2004. 

17 Hill, R., “Elastic Properties of Reinforced Solids: Some Theoretical Principles,” Journal of the Mechanics and Physics of 

Solids, Vol. 11, 1963, pp. 357–372. 

18 Hill, R., “A Self-consistent Mechanics of Composite Materials,” Journal of the Mechanics and Physics of Solids, Vol. 13, 

1965, pp. 213–222. 

19 Dvorak, G.J., “Plasticity Theories for Fibrous Composite Materials,” Metal Matrix Composites, Mechanisms and 

Properties, Vol. 2, edited by R.K. Everett and R.J. Arsenault, Academic Press, Boston, 1991, pp. 1–77. 

20 Levin, V.M., “Thermal Expansion Coefficients of Heterogeneous Materials,” Mechanics of Solids, Vol. 11, 1967,            

pp. 58–61. 

21 Bahei-El-Din, Y.A., “Uniform Fields, Yielding, and Thermal Hardening in Fibrous Composite Laminates,” International 

Journal of Plasticity, Vol. 8, 1992, pp. 867–892. 



 
International Journal for Multiscale Computational Engineering, V. 8, No. 1, pp. 69–80, 2010 

 17 

22 Hill, R., “Theory of Mechanical Properties of Fiber-Strengthened Materials: I. Elastic Behaviour,” Journal of the 

Mechanics and Physics of Solids, Vol. 12, 1964, pp. 199–212. 

23 Tsai, S.W. and Wu, E.M., “A General Theory of Strength for Anisotropic Materials,” Journal of Composite Materials,  

Vol. 5, 1971, pp. 58-80. 

24 O'Brien, T.K., “An Evaluation of Stiffness Reduction as a Damage Parameter and Criterion for Fatigue Failure in 

Composite Materials,” Ph.D. Dissertation, 1978, Virginia Polytechnic Institute and State University, Blacksburg, Virginia. 

25 Soden, P.D., Hinton, M.J., and Kaddour, A.S., “Lamina Properties, Lay-up Configurations and Loading Conditions for a 

Range of Fibre-Reinforced Composite Laminates,” Composites Science and Technology, Vol. 58, 1998, pp. 1011-1022. 

26 Soden, P.D., Hinton, M.J., and Kaddour, A.S., “Biaxial Test Results for Strength and Deformation of a Range of E-Glass 

and Carbon Fibre Reinforced Composite Laminates: Failure Exercise Benchmark Data,” Composites Science and Technology, 

Vol. 62, 2002, pp. 1489–1514. 

27 Mori, T. and Tanaka, K., “Average Stress in Matrix and Average Elastic energy of Materials with Misfitting Inclusions,” 

Acta Metallurgica, Vol. 21, 1973, pp. 571–574. 

28 Khire, R., Hajela, P. and Bahei-El-Din, Y., “Handling Uncertainty Propagation in Laminated Composites Through 

Multiscale Modeling of Progressive Failure," AIAA-2007-1913, Proceedings of the 48th AIAA/ASME/ASCE/ AHS/ASC 

Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii, 23-26 April 2007. 



 
International Journal for Multiscale Computational Engineering, V. 8, No. 1, pp. 69–80, 2010 

 18 

 

Table 1  Mechanical properties of fiber(25) 

Material LE  (GPa) 
TE  (GPa) 

LG  (GPa) 
TG  (GPa) 

L  
u  (GPa) 

AS4 Carbon 225 15 15 7 0.2 3.35 

Silenka E-glass 74 74 30.8 30.8 0.2 2.15 

 

 

Table 2  Mechanical properties of matrix(25)  

Material E  (GPa)   
uT  (MPa) uC  

(MPa) 
u  (MPa) L  

3501-6 epoxy 4.2(25) 0.34(25) 69(25) 250(25) 50(25) 0.3(a) 

DY063 epoxy 3.35(25) 0.35(25) 31.72(b) 115(b) 46.36(b) 0.268(b) 

   (a) Assumed  

   (b) Back calculated using properties of unidirectional composites (Table 4) 

 

 

Table 3  Elastic moduli of unidirectional composites 

Fiber Matrix fv  Method LE  (GPa) TE  (GPa) LG  (GPa) L  T  

AS4 3501-6 0.6 
Exp(25) 126 11 6.6 0.28 0.4 

M-T(27) 136.7 14.774 4.5365 0.24729 0.44594 

E-glass 

MY750/ 

HY917/ 

DY063 

0.6 
Exp(25) 45.6 16.2 5.83 0.278 0.4 

M-T(27) 45.763 11.019 4.3173 0.25165 0.44047 

 

 

Table 4  Ultimate strength of unidirectional composites(25,26) 

E-glass/DY063 AS4/3501-6 

22  (MPa) 12  (MPa) 22  (MPa) 12  (MPa) 

40 0 48 0 

-145 0 -200 0 

0 73 0 79 

-70.5 96.6 - - 
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Fig. 1. Geometry of a fibrous laminate.  
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Fig. 2. Schematic of stress flow in multiscale TFA of fibrous laminates subjected to overall 

membrane forces and bending moments, and local eigenstresses.  
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Fig. 3. Comparison of measured and computed stress-strain response of a symmetric, 

quasi-isotropic, carbon/epoxy laminate.  
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carbon/epoxy laminate. 
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