The British University in Egypt
BUE Scholar

Petroleum Engineering and Gas

**Energy and Environmental Engineering** 

2019

# NEW CORRELATION FOR CALCULATING ACENTRIC FACTOR OF PETROLEUM 2 FRACTIONS

Samir Khaled samir.khaled@bue.edu.eg

Follow this and additional works at: https://buescholar.bue.edu.eg/pet\_eng\_gas

Part of the Petroleum Engineering Commons

#### **Recommended Citation**

Khaled, Samir, "NEW CORRELATION FOR CALCULATING ACENTRIC FACTOR OF PETROLEUM 2 FRACTIONS" (2019). *Petroleum Engineering and Gas.* 8. https://buescholar.bue.edu.eg/pet\_eng\_gas/8

This Article is brought to you for free and open access by the Energy and Environmental Engineering at BUE Scholar. It has been accepted for inclusion in Petroleum Engineering and Gas by an authorized administrator of BUE Scholar. For more information, please contact bue.scholar@gmail.com.

# Article

NEW CORRELATION FOR CALCULATING ACENTRIC FACTOR OF PETROLEUM FRACTIONS

Sayed Gomaa<sup>1,2</sup>, Attia Attia<sup>2</sup>, Atef Abdelhady<sup>2</sup>, Samir Kaled<sup>2</sup>, Mohamed Elwageeh<sup>2</sup>

- <sup>1</sup> Mining and Petroleum Engineering Department, Faculty of Engineering Al-Azhar University, Cairo, Egypt
- <sup>2</sup> Petroleum Engineering and Gas Technology Department, Faculty of Engineering The British University in Egypt

Received August 28, 2019; Accepted December 6, 2019

#### Abstract

A proper description of the physical properties of the petroleum fractions in hydrocarbon mixtures is
 essential in performing reliable phase behavior calculations and compositional modeling studies. This
 paper presents a comparison study among five different correlations used to calculate the acentric
 factor of undefined petroleum fractions. A new correlation was developed for calculating the acentric
 factor of undefined petroleum fractions, a function of no carbon atoms with an average error of 0.099
 and a correlation coefficient of 0.998.

#### 18 19

**Keywords**: Acentric factor; Specific gravity; Molecular weight; Boiling point.

#### 20 **1. Introduction**

The acentric factor is a concept that was introduced by Pitzer <sup>[1]</sup> and has proven to be very useful in the characterization of substances. It has become a standard for the proper characterization of any single pure component, along with other common properties, such as molecular weight, critical temperature, critical pressure, and critical volume. The acentric factor is a unique correlating parameter that is used as a measure of the centricity or the deviation of the component molecular shape from that of a spherical. The shape of the argon molecule is considered completely spherical and is assigned an acentric factor of zero.

#### 28 2. Undefined petroleum fractions

Nearly all naturally occurring hydrocarbon systems contain a number of heavy fractions
 that are not well defined and are not mixtures of discretely identified components. These heavy
 fractions are often lumped together and identified as the plus fraction, e.g., C<sub>7</sub> fraction <sup>[2]</sup>.

A proper description of the physical properties of the plus fractions and other undefined petroleum fractions in hydrocarbon mixtures is essential in performing reliable phase behavior calculations and compositional modeling studies. Frequently, a distillation analysis or a chromatographic analysis is available for this undefined fraction. Other physical properties, such as molecular weight and specific gravity, may also be measured for the entire fraction or for various cuts of it <sup>[3-4]</sup>.

To use any of the thermodynamic property-prediction models, e.g., equations, of state, to predict the phase and volumetric behavior of complex hydrocarbon mixtures, one must be able to provide the acentric factor, along with the critical temperature and critical pressure, for both the defined and undefined (heavy) fractions in the mixture. The problem of how to adequately characterize these undefined plus fractions in terms of their critical properties and acentric factors has been long recognized in the petroleum industry <sup>[3,5]</sup>. Katz and Firoozabadi <sup>[5]</sup> presented a generalized set of physical properties for the petroleum

44  $rations C_6$  through C<sub>45</sub>. The tabulated properties include the average boiling point, specific

9 10 11

1

2 3

4

- gravity, molecular weight, and critical properties. These tabulated properties were generated 46
- by analyzing the physical properties of 26 condensates and crude oil samples. These generalized 47 properties are given in Table A-1. 48
- Ahmed <sup>[2,4]</sup> correlated Katz-Firoozabadi-tabulated physical properties with the number of 49 carbon atoms of the fraction by using a regression model. The generalized concluded the 50
- mathematical model to calculate the acentric factor has the following form: 51 (1)
- 52  $\omega = a_1 + a_2 n + a_3 n^2 + a_4 n^3 + a_5/n$
- where:  $a_1 = -0.31428163$ ;  $a_2 = 0.0780028$ ;  $a_3 = -0.00139205$ ;  $a_4 = 0.0000102147$ ,  $a_5 = 0.991028867$ . 53 Kesler and Lee <sup>[6]</sup> developed two expressions for estimating the acentric factor that uses 54
- the Watson characterization factor and the reduced boiling point temperature as correlating 55 56 parameters. The two correlating parameters are defined by the following two parameters:
- the Watson characterization factor  $K = T^{1/3}/v$ 57

57 the Watson characterization factor 
$$K_w = T_b^{-1/3}/\gamma$$
 (2)  
58 the reduced boiling point " $\theta$ " as defined by  $\theta = T_b/T_c$  (3)

- 59 where: the boiling point  $T_b$  and critical temperature  $T_c$  are expressed in °R.
- Kessler and Lee <sup>[6]</sup> proposed the following two expressions for calculating the acentric factor 60 that is based on the value of the reduced boiling point: 61
- For  $\theta > 0.8$ 62

63 
$$\omega = -7.904 + 0.1352K_w - 0.007456(K_w)^2 + 8.359\theta + (1.408 - 0.01063K_w)/\theta$$
 (4)  
64 For  $\theta < 0.8$ 

$$FOF \theta < 0.8 (-ln(\frac{p_c}{r_c}) = 5.92714 \pm \frac{6.09648}{r_c} \pm 1.28862 ln(\theta) = 0.169347 \theta^6$$

65 
$$\omega = \frac{(-\ln(\frac{1}{14.7})^{-5.92})^{14} + \frac{1}{\theta} + 1.26862\ln(\theta) - 0.169347\theta}{(15.2518 - \frac{15.6875}{\theta} - 13.4721\ln(\theta) + 0.43577\theta^6)}$$
(5)

- where:  $p_c$  = critical pressure, psia;  $T_c$  = critical temperature, °R;  $T_b$  = boiling point, °R;  $\Omega$  = 66 acentric factor; M = molecular weight;  $\gamma = specific gravity$ . 67
- 68 Watansiri et al. <sup>[7]</sup> developed a set of correlations to estimate the critical properties and acentric factor of coal compounds and other undefined hydrocarbon components and their 69 derivatives. The proposed correlations express the critical and physical properties of the un-70 71 defined fraction as a function of the fraction normal boiling point, specific gravity, and molecular weight. Their relationship for calculating the acentric factor has the following form: 72  $\omega = [X + Y + 7] \frac{5T_b}{5T_b}$ 72 (6) where:

$$\begin{array}{l} & & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & &$$

76 
$$Y = -0.12027778 \times 10^{-4} T_b M + 0.001261 \gamma M + 0.1265 \times 10^{-4} M^2$$

77 
$$Z = 0.2016 \times 10^{-4} \gamma M^2 - 66.29959 \frac{T_b^{\frac{3}{3}}}{M} - 0.00255452 \frac{T_b^{\frac{3}{3}}}{\gamma^2}$$

Edmister <sup>[8]</sup> proposed a correlation for estimating the acentric factor of pure fluids and 78 79 petroleum fractions. The equation, widely used in the petroleum industry, requires a boiling point, critical temperature, and critical pressure. The proposed expression is given by the 80 following relationship. 01

$$3[\log(p_c/14.7)]$$

82 
$$\omega = \frac{3[10g(p_c/14.7)]}{7[(T_c/T_b)-1]} - 1$$

Magoulas and Tassios <sup>[9]</sup> correlated the acentric factor with the specific gravity and molecu-83 84 lar weight of the fraction as expressed by the following relationship:

85 
$$\omega = -0.64235 + 0.00014667M + 0.021876\gamma - \frac{4.559}{M} + 0.21699ln(M)$$
 (10)

#### 86 3. Proposed correlations

Another correlation was developed for calculating the critical temperature of undefined pe-87 troleum fractions as a function of the number of carbon atoms with an average error of 88 0.076087 % and correlation coefficient of 0.999961514. 89

90 
$$\omega = a_0 + a_1 \ln(n) + a_2 [\ln(n)]^2 + a_3 [\ln(n)]^3 + a_4 n + a_5 n^2 + a_6 n^3 + a_7/n$$
 (11)

- with the coefficients  $a_0$  through  $a_7$  having the following values: 91
- $a_0 = -280.699468; a_1 = 230.665208; a_2 = -71.167096; a_3 = 9.737882; a_4 = -2.413863; a_5 = -0.003576; a_8 = -2.413863; a$ 92 93  $a_6 = 0.00007; a_7 = 328.269877.$

3)

(8)

(9)

# 94 **3.1. Statistical error analysis**

The statistical error analyses were used to check the accuracy of the critical temperature correlations developed by Ahmed, Edmister, Kessler-Lee, Magoulas, Watansiri, and this study. The accuracy of correlations relative to the experimental values tabulated by Katz-Firoozabaditabulated is determined by various statistical means. The criteria used in this study were an average absolute relative error, standard deviation, and the correlation coefficient.

## 100 **3.2. Average relative error**

- 101 This is an indication of the relative deviation in percent from the experimental values and 102 is given by:  $(\sum_{i=1}^{n} E_i)/n$ .  $E_i$  is the relative deviation in percent of estimated value from an exper-
- 103 imental value and is defined by:  $E_i = \left[\frac{(p_{cexp} p_{ccal})}{p_{cexp}}\right]_i \times 100$
- 104 The lower the value of  $E_i$  the more equally distributed are the errors between positive and 105 negative values.

# 106 **3.3. Average absolute relative error**

107 This is defined as:  $\sum_{i=1}^{n} |E_i| / n$  and indicates the relative absolute deviation in percent from 108 the tabulated values. A lower value implies a better correlation.

# 109 **3.4. Standard deviation**

110 Standard deviation  $s_x$  is a measure of dispersion and is expressed as: $s_x^2 = (\sum_{i=1}^n E_i^2)/(n-1)$ 111 A lower value of the standard deviation means a smaller degree of scatter.

# 112 **3.5. Correlation coefficient**

- 113 The correlation coefficient, r, represents the degree of success in reducing the standard
- 114 deviation by regression analysis. It is defined as:  $r^2 = 1 \left[\sum_{i=1}^{n} \left(p_{c_{cal}} p_{c_{exp}}\right)^2 / \sum_{i=1}^{n} \left(p_{c_{cal}} p_{c_{exp}}\right)^2 \right]$

115 
$$p_{c_{avg}}$$
)<sup>2</sup>] where  $p_{c_{avg}} = \left(\sum_{i=1}^{n} p_{c_{iexp}}\right)/n$ 

116 The correlation coefficient lies between 0 and 1. A value of 1 indicates a perfect correlation, 117 whereas a value of 0 implies no correlation at all among the given independent variables.

# 118 **4. Comparison of correlations**

# 119 **4.1. Statistical error analysis**

Average absolute relative error, standard deviation, and correlation coefficient were computed for each correlation. The proposed correlation for the acentric factor of this study achieved the highest correlation coefficient accuracy of 0.998, with the minimum absolute average relative error of 0.099, as presented in Table 1.

Table 2 presents a comparison of the acentric factor calculated by five published correlations in addition to the proposed correlation in this paper. The crossplot of calculated values of the acentric factor from this study's correlation vs. measured values is presented in Figure 1. The plotted points of this study's correlation fall very close to the perfect correlation of the 45° line.

129 Table 1. Statistical accuracy of acentric factor correlations

|                         | AARE, % | SD     | R <sup>2</sup> |
|-------------------------|---------|--------|----------------|
| This study              | 0.99    | 1.28   | 0.998          |
| Ahmed <sup>[2]</sup>    | 19.53   | 20.45  | 0.75           |
| Edmister <sup>[8]</sup> | 0.33    | 0.42   | 0.9998         |
| Kesler <sup>[6]</sup>   | 10.12   | 12.50  | 0.87           |
| Magoulas <sup>[9]</sup> | 15.29   | 16.91  | 0.34           |
| Watansiri [7]           | 89.15   | 129.87 | 0.21           |

| Experimental | Ahmed <sup>[2]</sup> | Edmister [8] | Kesler <sup>[6]</sup> | Magoulas <sup>[9]</sup> | Watansiri [7] | Sayed    |
|--------------|----------------------|--------------|-----------------------|-------------------------|---------------|----------|
| 6            | 0.270999             | 0.248546     | 0.240597              | 0.292234                | 0.255514      | 0.251877 |
| 7            | 0.308607             | 0.283903     | 0.276993              | 0.330563                | 0.291729      | 0.274624 |
| 8            | 0.349758             | 0.310527     | 0.305254              | 0.361078                | 0.335521      | 0.312921 |
| 9            | 0.392548             | 0.346858     | 0.344089              | 0.395159                | 0.371463      | 0.351658 |
| 10           | 0.435859             | 0.386168     | 0.386551              | 0.423171                | 0.409867      | 0.387628 |
| 11           | 0.479                | 0.417523     | 0.420982              | 0.448419                | 0.438101      | 0.421059 |
| 12           | 0.521534             | 0.451661     | 0.458645              | 0.473149                | 0.463836      | 0.452898 |
| 13           | 0.563173             | 0.485842     | 0.496295              | 0.495802                | 0.484871      | 0.483977 |
| 14           | 0.603733             | 0.518153     | 0.532293              | 0.518144                | 0.512708      | 0.514824 |
| 15           | 0.643092             | 0.54863      | 0.566536              | 0.540117                | 0.550307      | 0.545685 |
| 16           | 0.681177             | 0.580687     | 0.602683              | 0.560443                | 0.598037      | 0.576582 |
| 17           | 0.717944             | 0.610581     | 0.636423              | 0.578305                | 0.651864      | 0.607396 |
| 18           | 0.753374             | 0.640285     | 0.669828              | 0.593995                | 0.712069      | 0.637916 |
| 19           | 0.787464             | 0.662081     | 0.694678              | 0.606827                | 0.770437      | 0.667895 |
| 20           | 0.820223             | 0.69375      | 0.730412              | 0.619134                | 0.833967      | 0.697071 |
| 21           | 0.851673             | 0.717376     | 0.757376              | 0.634773                | 0.933182      | 0.725197 |
| 22           | 0.881841             | 0.743542     | 0.787246              | 0.643281                | 0.987347      | 0.752052 |
| 23           | 0.910759             | 0.768621     | 0.815744              | 0.654246                | 1.070899      | 0.77745  |
| 24           | 0.938466             | 0.793225     | 0.843912              | 0.664824                | 1.161195      | 0.801245 |
| 25           | 0.965003             | 0.814961     | 0.912099              | 0.675875                | 1.266902      | 0.823334 |
| 26           | 0.990415             | 0.844562     | 0.937471              | 0.68578                 | 1.371109      | 0.843657 |
| 27           | 1.01475              | 0.866122     | 0.958833              | 0.694614                | 1.471543      | 0.862194 |
| 28           | 1.038057             | 0.8933       | 0.981977              | 0.703963                | 1.587702      | 0.878969 |
| 29           | 1.060385             | 0.915516     | 1.002994              | 0.711572                | 1.689814      | 0.894041 |
| 30           | 1.081789             | 0.938819     | 1.021941              | 0.720473                | 1.818637      | 0.907509 |
| 31           | 1.10232              | 0.893181     | 1.040405              | 0.727752                | 1.930101      | 0.919501 |
| 32           | 1.122034             | 0.905838     | 1.06129               | 0.73556                 | 2.057783      | 0.93018  |
| 33           | 1.140985             | 0.91529      | 1.078484              | 0.743199                | 2.192576      | 0.939736 |
| 34           | 1.15923              | 0.928839     | 1.096863              | 0.750657                | 2.33181       | 0.948387 |
| 35           | 1.176825             | 0.940101     | 1.112239              | 0.75602                 | 2.434293      | 0.956373 |
| 36           | 1.193828             | 0.958994     | 1.130774              | 0.763223                | 2.581809      | 0.963959 |
| 37           | 1.210295             | 0.960311     | 1.14188               | 0.768408                | 2.69299       | 0.971428 |
| 38           | 1.226285             | 0.976277     | 1.159392              | 0.775377                | 2.851193      | 0.979082 |
| 39           | 1.241856             | 0.982858     | 1.172859              | 0.780992                | 2.98215       | 0.987242 |
| 40           | 1.257067             | 0.997177     | 1.190026              | 0.787735                | 3.14884       | 0.996243 |
| 41           | 1.271976             | 1.000661     | 1.199335              | 0.791981                | 3.256053      | 1.006433 |
| 42           | 1.286642             | 1.019988     | 1.214429              | 0.797927                | 3.412744      | 1.018174 |
| 43           | 1.301126             | 1.021674     | 1.227339              | 0.803226                | 3.559051      | 1.03184  |
| 44           | 1.315485             | 1.042802     | 1.243909              | 0.809026                | 3.72219       | 1.047815 |
| 45           | 1.329781             | 1.05158      | 1.255999              | 0.813616                | 3.858522      | 1.066492 |

131 Table 2. Comparison of acentric factors calculated by five published correlations and this study



Figure 1. Crossplot of acentric factor (after this study)

### 132 **5. Conclusions**

- 133 From this paper, the following conclusions may be drawn:
- 134 1. This paper presents a comparison between five different correlations used to calculate the 135 acentric factor of undefined petroleum fractions.
- 136 2. The new correlation was developed for calculating the acentric factor of undefined petro-137 leum fractions.
- 138 3. Deviations from experimental values of the acentric factor indicated as average percent
- relative errors, average absolute percent relative errors, and the standard deviations were
- 140 lower for this study than for calculated values based on Ahmed, Kessler-Lee, Magoulas and
- 141 Watansiri correlations.
- 142 3. The developed correlation is more practical than the Edmister correlation, which is a func-
- tion of critical pressure, critical temperature and average boiling point that, in turn, needs three correlations to be calculated.
- 4. The correlation coefficient of the correlations of this study is closer to one than that of othercorrelations.

#### 147 *Nomenclature*

| $p_{c}$ | critical pressure, psia  | М     |
|---------|--------------------------|-------|
| $T_c$   | critical temperature, °R | γ     |
| $T_b$   | boiling point, °R        | $v_c$ |
| ω       | acentric factor          | n     |

molecular weight specific gravity critical volume, ft<sup>3</sup>/lb-mol no of carbon atoms

#### 148 Appendix 1: Table A-1

| С  | Tb    | SG    | К     | М   | Тс    | Рс  | ω     | Vc      |
|----|-------|-------|-------|-----|-------|-----|-------|---------|
| 6  | 607   | 0.69  | 12.27 | 84  | 923   | 483 | 0.25  | 0.06395 |
| 7  | 658   | 0.727 | 11.96 | 96  | 985   | 453 | 0.28  | 0.06289 |
| 8  | 702   | 0.749 | 11.87 | 107 | 1,036 | 419 | 0.312 | 0.06264 |
| 9  | 748   | 0.768 | 11.82 | 121 | 1,085 | 383 | 0.348 | 0.06258 |
| 10 | 791   | 0.782 | 11.83 | 134 | 1,128 | 351 | 0.385 | 0.06273 |
| 11 | 829   | 0.793 | 11.85 | 147 | 1,166 | 325 | 0.419 | 0.06291 |
| 12 | 867   | 0.804 | 11.86 | 161 | 1,203 | 302 | 0.454 | 0.06306 |
| 13 | 901   | 0.815 | 11.85 | 175 | 1,236 | 286 | 0.484 | 0.06311 |
| 14 | 936   | 0.826 | 11.84 | 190 | 1,270 | 270 | 0.516 | 0.06316 |
| 15 | 971   | 0.836 | 11.84 | 206 | 1,304 | 255 | 0.55  | 0.06325 |
| 16 | 1,002 | 0.843 | 11.87 | 222 | 1,332 | 241 | 0.582 | 0.06342 |
| 17 | 1,032 | 0.851 | 11.87 | 237 | 1,360 | 230 | 0.613 | 0.0635  |
| 18 | 1,055 | 0.856 | 11.89 | 251 | 1,380 | 222 | 0.638 | 0.06362 |
| 19 | 1,077 | 0.861 | 11.91 | 263 | 1,400 | 214 | 0.662 | 0.06372 |
| 20 | 1,101 | 0.866 | 11.92 | 275 | 1,421 | 207 | 0.69  | 0.06384 |
| 21 | 1,124 | 0.871 | 11.94 | 291 | 1,442 | 200 | 0.717 | 0.06394 |
| 22 | 1,146 | 0.876 | 11.95 | 300 | 1,461 | 193 | 0.743 | 0.06402 |
| 23 | 1,167 | 0.881 | 11.95 | 312 | 1,480 | 188 | 0.768 | 0.06408 |
| 24 | 1,187 | 0.885 | 11.96 | 324 | 1,497 | 182 | 0.793 | 0.06417 |
| 25 | 1,207 | 0.888 | 11.99 | 337 | 1,515 | 177 | 0.819 | 0.06431 |
| 26 | 1,226 | 0.892 | 12    | 349 | 1,531 | 173 | 0.844 | 0.06438 |
| 27 | 1,244 | 0.896 | 12    | 360 | 1,547 | 169 | 0.868 | 0.06443 |
| 28 | 1,262 | 0.899 | 12.02 | 372 | 1,562 | 165 | 0.894 | 0.06454 |
| 29 | 1,277 | 0.902 | 12.03 | 382 | 1,574 | 161 | 0.915 | 0.06459 |

| С  | Tb    | SG    | К     | м   | Тс    | Рс  | ω     | Vc      |
|----|-------|-------|-------|-----|-------|-----|-------|---------|
| 30 | 1,294 | 0.905 | 12.04 | 394 | 1,589 | 158 | 0.941 | 0.06468 |
| 31 | 1,310 | 0.909 | 12.04 | 404 | 1,603 | 143 | 0.897 | 0.06469 |
| 32 | 1,326 | 0.912 | 12.05 | 415 | 1,616 | 138 | 0.909 | 0.06475 |
| 33 | 1,341 | 0.915 | 12.05 | 426 | 1,629 | 134 | 0.921 | 0.0648  |
| 34 | 1,355 | 0.917 | 12.07 | 437 | 1,640 | 130 | 0.932 | 0.06489 |
| 35 | 1,368 | 0.92  | 12.07 | 445 | 1,651 | 127 | 0.942 | 0.0649  |
| 36 | 1,382 | 0.922 | 12.08 | 456 | 1,662 | 124 | 0.954 | 0.06499 |
| 37 | 1,394 | 0.925 | 12.08 | 464 | 1,673 | 121 | 0.964 | 0.06499 |
| 38 | 1,407 | 0.927 | 12.09 | 475 | 1,683 | 118 | 0.975 | 0.06506 |
| 39 | 1,419 | 0.929 | 12.1  | 484 | 1,693 | 115 | 0.985 | 0.06511 |
| 40 | 1,432 | 0.931 | 12.11 | 495 | 1,703 | 112 | 0.997 | 0.06517 |
| 41 | 1,442 | 0.933 | 12.11 | 502 | 1,712 | 110 | 1.006 | 0.0652  |
| 42 | 1,453 | 0.934 | 12.13 | 512 | 1,720 | 108 | 1.016 | 0.06529 |
| 43 | 1,464 | 0.936 | 12.13 | 521 | 1,729 | 105 | 1.026 | 0.06532 |
| 44 | 1,477 | 0.938 | 12.14 | 531 | 1,739 | 103 | 1.038 | 0.06538 |
| 45 | 1,487 | 0.94  | 12.14 | 539 | 1,747 | 101 | 1.048 | 0.06540 |

#### 149 References

- [1] Pitzer KS. The volumetric and thermodynamics properties of fluids. J. Am. Chem. Soc., 1955; 77 (13): 3427–3433.
- [2] Ahmed T. Hydrocarbon Phase Behavior, Gulf Publishing Company, 1989.
- [3] Whitson CH, and Brule MR. Phase Behavior, SPE, Texas, 2000.
- [4] Ahmed T. Equations of State and PVT Analysis Applications for Improved Reservoir Modeling, Amsterdam: Elsevier, Second edition 2016.
- [5] Katz DL, Firoozabadi A. 1978. Predicting phase behavior of condensate/crude-oil systems using methane interaction coefficients. J. Petrol. Tech., 1978; November: 1649–1655.
- [6] Kesler MG, Lee BI. 1976. Improve prediction of enthalpy of fractions. Hydrocarb. Process., 1976; March: 153–158.
- [7] Watansiri S, Owens VH, Starling KE. Correlations for estimating critical constants, acentric factor, and dipole moment for undefined coal-fluid fractions. Ind. Eng. Chem. Process. Des. Dev., 1985; 24: 294–296.
- [8] Edmister WC. 1958. Applied hydrocarbon thermodynamics, part 4, compressibility factors and equations of state. Petroleum Refiner, 1958; 37: 173–179.
- [9] Magoulas K and Tassios D. Thermophysical properties of n-alkanes from C1 to C20 and their prediction for higher ones. Fluid Phase Equilibria, 1990; 56: 119–140.

# 150

- 151
- To whom correspondence should be addressed: Sayed Gomaa, Faculty of Engineering, British University in Egypt,
   El Sherouk City Cairo Suez Desert Road Postal No. 11837 P.O. Box 43, E-mail sayed.gomaa@bue.edu.eq