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We study asset pricing dynamics in artificial financial markets model. The financial market is populated with agents following
two heterogeneous trading beliefs, the technical and the fundamental prediction rules. Agents switch between trading rules with
respect to their past performance. The agents are loss averse over asset price fluctuations. Loss aversion behaviour depends on
the past performance of the trading strategies in terms of an evolutionary fitness measure. We propose a novel application of
the prospect theory to agent-based modelling, and by simulation, the effect of evolutionary fitness measure on adaptive belief
system is investigated. For comparison, we study pricing dynamics of a financial market populated with chartists perceive losses
and gains symmetrically. One of our contributions is validating the agent-based models using real financial data of the Egyptian
Stock Exchange. We find that our framework can explain important stylized facts in financial time series, such as random walk
price behaviour, bubbles and crashes, fat-tailed return distributions, power-law tails in the distribution of returns, excess volatility,
volatility clustering, the absence of autocorrelation in raw returns, and the power-law autocorrelations in absolute returns. In
addition to this, we find that loss aversion improves market quality and market stability.

1. Introduction

In 1987, the Wall Street Stock Market faced a severe financial
crisis. That crisis provoked economists to realize that tradi-
tional economic theories such as the theory of rational expec-
tations and efficient market hypothesis cannot explain the
emergent aggregate behaviour of real markets. In addition,
classical economic theories suggest that financial markets are
populated with rational agents and rationality is common
knowledge to all agents. However, these assumptions lead to
no trade theorems [1], which contradict the excessive trading
volume observed in real financial markets. Moreover, the
rational agent cannot survive in a heterogeneous world1.This
observation motivated the researchers to use more advanced
computational technique to better understand the behaviour
of financial markets.

Therefore, the high trading activities in financial markets
present evidence for the presence of heterogeneous predic-
tions for asset prices. Heterogeneous agent models aim to
relax the classical hypothesis of a representative agent and
the rational expectations towards heterogeneous bounded
rational agents [3]. These models study the individual-based

behaviour in markets populated with bounded rational,
heterogeneous agents using simple heuristics and simple
extrapolationmethods.This approach seems to provide plau-
sible results in generating a near-realistic financial time series
[4] and replicating the so-called stylized facts of financial
markets [5–7]. Stylized facts represent a set of statistical
properties common across many markets and time periods,
such as bubbles and crashes, fat-tailed return distributions,
uncorrelated returns, and volatility clustering.

Frankel and Froot [8], Taylor andAllen [9], andMenkhoff
[10] conducted different questionnaire surveys to investi-
gate the traders’ main heuristics in order to model their
behaviours. The studies revealed that traders rely on two
trading philosophies, the technical and the fundamental
analysis, to determine their trading strategies. According to
chartists, the ones who believe that price trend will continue
and follow technical analysis will try to maximize their
profits by taking advantages of asset price fluctuations [11].
Chartists compare the current price with the previous one;
they buy (sell) when the asset price increases (decreases).
On the other hand, fundamentalists, the ones who follow
fundamental analysis, predict that the asset pricewill revert to
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its fundamental value [12].Therefore, fundamentals buy (sell)
when the asset price decreases (increases) as compared to its
fundamental value.

Financial markets are comprised of many traders with
heterogeneous beliefs, attributes, and level of rationality
[13]. Traders face high uncertainty since they have to make
expectations of future prices to submit their current orders.
This uncertainty is due not only to the limited traders’ ability
to collect and process information, but also to the algorithmic
complexity of the problem they face. Consequently, traders
are continuously enforced to learn and adapt to highly
dynamic environments. This adaptation causes the whole
financial system to coevolve. Studying financial markets
as adaptive evolutionary systems of heterogeneous agents
is a completely different approach from that used in the
traditional economic models [14]. This encourages the use
of agent-based modelling as the most suitable approach, as
it provides more flexible tools to simulate the real world [15–
18]. This approach implies new challenges and opportunities
for making policy as well as managing economic crisis.

Artificial financial markets are models developed using
the agent-based modelling approach. The main aim of arti-
ficial financial markets is to understand the endogenous
variables that cause aggregate behaviours and patterns to
emerge at the macro level [4, 19–23]. These artificial markets
serve as test-beds for policy makers to explore the effect
of different regulatory policies which improves the decision
making process.Many of themarket crashes can be limited by
identifying the sensitive parameters that affect the financial
market either directly or indirectly [24]. In this paper, we
propose an artificial financial market which is capable of
generating realistic stock market dynamics.

Meanwhile, behavioural finance is a relatively new
paradigm seeking to link behavioural and cognitive psy-
chological theories with finance to understand the bounded
rational decisions of financial traders. Since 1979, Kahne-
man and Tversky provoked the idea of the choice under
uncertainty. They spent many years to study this con-
cept by conducting surveys and collecting data about the
traders’ behaviour under uncertainty [25–28]. Kahneman
and Tversky propose that the outcomes of risky prospects
are estimated by a value function. This function is mainly
characterized by loss aversion; that is, the function is steeper
in the negative than in the positive domain. This character-
istic describes asymmetric S-shaped value function, which is
concave above a reference point and convex below it.

Although the prospect theory has been developed since
1979; yet there is no clear definition of gains and losses and
how to measure them. Also, there is no clear identification of
the reference point. Accordingly, its application into financial
markets framework is very challenging. The model proposed
in this paper provides a novel application of the prospect
theory, where agents recognize their gains and losses in terms
of an evolutionary fitness measure.

Many studies have been developed tomodel the switching
dynamics between fundamental analysis and technical anal-
ysis, such as [4, 29, 30]. It is worth noting that deterministic
agent-based financial market models, such as [31, 32], are
able to explain boom-bust cycles while stochastic models,

such as [4, 22, 33–35], can replicate more detailed stylized
facts of financial markets. Unfortunately, few authors studied
behavioural biases in their agent-based financial framework,
such as [36–39].

In this paper, we explore the agent-based modelling as
a tool for studying loss aversion behavioural bias intro-
duced by the prospect theory. Our model contributes to
behavioural finance research by linking the macro and the
micro behaviours. This link is ignored in the classical models
studied behavioural finance. To our knowledge, no research
has been conducted to study the impact of loss aversion
behavioural bias on the adaptive belief system and asset pric-
ing dynamics, which is considered as our main contribution
in the current work.

The rest of this paper is organized as follows. In Section 2,
we introduce an agent-based financial market model in
which the chartist traders are loss averse, along with the
basic parameter settings and the model implementation. In
Section 3, we investigate the extent to which our agent-based
model is able to replicate the stylized facts of the Egyptian
Stock Exchange. In addition, the results of a large Monte
Carlo simulation we performed are presented. Finally, in
Section 4, we summarize our main results and conclusions.

2. An Agent-Based Model under Loss Aversion

In this section we introduce an agent-based financial model
populated with heterogeneous agents with loss aversion
behavioural bias. At the beginning we discuss the model def-
inition and assumptions. In Section 2.2, the detailed model
is provided. Finally, the parameter settings are depicted in
Section 2.3.

2.1. Model Definition and Assumptions. The main assump-
tions of the proposed artificial financial market can be
summarized as follows.

(i) There is only one risky asset to be traded.
(ii) There are two types of agents, the market maker and

the traders.
(iii) In each time step 𝑡, 𝑡 = 0, 1, . . . , 𝑇, each trader

decides on taking one of two alternative actions,
either to submit orders or to abstain from the market.

(iv) If a trader chooses to submit an order, she/he can
either follow technical or fundamental trading rule.
It is assumed that, at time 𝑡 = 0, the orders are
submitted without knowing the asset price. It is also
assumed that fundamental traders can calculate the
fundamental values.

(v) Beliefs adaptation rule: the agents are bounded ratio-
nal as they tend to choose the strategy performed well
in the recent past and therefore display some kind of
learning behaviour. It is assumed that the fitness of
each trading strategy is available and publicly known
by all agents.

(vi) The chartist agents are loss aversion so that they
recognize losses more than twice recognizing their
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gains. Consequently, they consider a value function
proposed by the prospect theory to evaluate the
fitness of each trading strategy.

(vii) The fraction of traders following each strategy is
determined via a discrete choice model.

(viii) The market maker correlates the orders and adjusts
the asset price according to the net submitted orders.
It is assumed that the market maker is a risk neutral
and settles the asset prices without intervention.

(ix) Agents in our market interact indirectly through
their impact on price adjustment which affects the
performance of the trading rules which in turn affects
the agent decision to select trading strategy and so on.

2.2. Model Formulation. The behaviour of the market maker
is described as in Farmer and Joshi [34], where the price
settlement is formulated as a log-linear price impact function.
This function measures the relation between the quantity
ordered (demand/supply) and the price of the asset.Thus, the
log-price of the asset in period 𝑡 + 1 is given by

𝑝
𝑡+1

= 𝑝
𝑡
+ 𝑎 (𝑤

𝑐

𝑡
𝐷
𝑐

𝑡
+ 𝑤
𝑓

𝑡
𝐷
𝑓

𝑡
) + 𝛼
𝑡
, (1)

where 𝑎 is a positive price settlement parameter, 𝐷𝑐
𝑡
and 𝐷

𝑓

𝑡

are the orders submitted by chartists and fundamentalists,
respectively, at time 𝑡, and 𝑤

𝑐

𝑡
and 𝑤

𝑓

𝑡
are the weights of

technical strategy and fundamental strategy, respectively, at
time 𝑡. In order to make our assumptions close to the real
market, the noise terms 𝛼

𝑡
are added to catch any random

factors affecting the price settlement process. It is assumed
that 𝛼

𝑡
, 𝑡 = 1, 2, . . . , 𝑇 are IID normally distributed random

variables withmean zero and constant standard deviation 𝜎
𝛼
.

The goal of the technical analysis used by the chartists is
to exploit the price changes [40]. Orders exploiting technical
trading rules at time 𝑡 can be written as

𝐷
𝑐

𝑡
= 𝑏 (𝑝

𝑡
− 𝑝
𝑡−1

) + 𝛽
𝑡
, (2)

where 𝑏 is a positive reaction parameter (also called extrap-
olating parameter) that capture the strength of agents’ sen-
sitivity to the price signals. The first term at the right-hand
side of (2) represents the difference between current and last
price, which indicates the exploitation of price changes. The
second term captures additional random orders of technical
trading rules. And 𝛽

𝑡
, 𝑡 = 1, 2, . . . , 𝑇 are IID normally

distributed random variables with mean zero and constant
standard deviation 𝜎

𝛽
.

Fundamental analysis assumes that prices will revert
to their fundamental values in the short run [12]. Orders
generated by fundamental trading rules at time 𝑡 can be
formalized as

𝐷
𝑓

𝑡
= 𝑐 (𝐹

𝑡
− 𝑝
𝑡
) + 𝛾
𝑡
, (3)

where 𝑐 is a reaction parameter (also called a reverting param-
eter) for the sensitivity of fundamentalists’ excess demand
to deviations of the price from the underlying fundamental
value.𝐹

𝑡

2 are log-fundamental values (or simply fundamental

values) [31]. 𝛾
𝑡
is introduced to capture additional random

orders of fundamental trading rules. 𝛾
𝑡
, 𝑡 = 1, 2, . . . , 𝑇 are

IID normally distributed random variables with mean zero
and constant standard deviation 𝜎

𝛾
.

The evolutionary part of the model, inspired by Brock
and Hommes [32], depicts how beliefs are evolved over time.
That is, how agents adapt their beliefs and switching between
strategies. This part is mirrored in the fractions 𝑤

𝑡
= {𝑤
𝑐

𝑡
,

𝑤
𝑓

𝑡
, 𝑤
0

𝑡
}, where 𝑤0

𝑡
represents the fraction of inactive agents

and𝑤𝑐
𝑡
, 𝑤
𝑓

𝑡
are as indicated in (1), and the strategyweights add

up to one. Fractions are updated according to evolutionary
fitness measure (or attractiveness of the trading rules) which
can be presented as follows:

𝐴
𝑐

𝑡
= (exp (𝑝

𝑡
) − exp (𝑝

𝑡−1
))𝐷
𝑐

𝑡−2
+ 𝑚𝐴

𝑐

𝑡−1
(4)

𝐴
𝑓

𝑡
= (exp (𝑝

𝑡
) − exp (𝑝

𝑡−1
))𝐷
𝑓

𝑡−2
+ 𝑚𝐴

𝑓

𝑡−1
(5)

𝐴
0

𝑡
= 0, (6)

where 𝐴
𝑐

𝑡
, 𝐴𝑓
𝑡
, and 𝐴

0

𝑡
are the fitness measures of using

chartist strategy, fundamental strategy, and no-trade strategy,
respectively. The inactive traders submit zero orders, so they
got zero attractiveness of taking such an action. The fitness
measure of the other two trading rules, the technical and the
fundamental analysis, depends on two components. The first
term of the right-hand sides of (4) and (5) is the performance
of the strategy rule in most recent time. Notice that orders
submitted in period 𝑡 − 2 are executed at the price declared in
period 𝑡 − 1. The gains or losses depend on the price declared
in period 𝑡. The second term of the right-hand sides of (4)
and (5) represents agents’ memory, where 0 ≤ 𝑚 ≤ 1 is the
memory parameter that measures the speed of recognizing
current myopic profits. For 𝑚 = 0, agent has no memory,
while for𝑚 = 1 they compute the fitness of the rule as a sum
of all observed myopic profits.

While, in Westerhoff [22] model, agents symmetrically
perceive gains and losses in terms of fitness, in our model
we propose a realistic behavioural bias, so that chartists
evaluate their strategy fitness in terms of a value function of
gains and losses. The proposed value function implies that
chartists recognize losses more than twice their recognition
of gains. As our focus is to study loss aversion, we adopt
the Tversky and Kahneman [27] and Benartzi and Thaler
[41] piecewise linear value function proposed by the prospect
theory. Accordingly, the value of the fitness of technical
strategy is given by

V
𝑐
=

{

{

{

𝐴
𝑐

𝑡
if 𝐴𝑐
𝑡
≥ 0

𝜆𝐴
𝑐

𝑡
if 𝐴𝑐
𝑡
< 0,

(7)

where 𝜆 is the parameter of loss aversion that measures the
relative sensitivity to gains and losses. However, setting 𝜆 = 1

reduces the value function to V
𝑐
= 𝐴
𝑐

𝑡
; we call this case loss-

neutral chartists.
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Following Manski and McFadden [42], the market share
of each strategy can be obtained by the discrete choicemodel3
as follows:

𝑤
𝑐

𝑡
=

exp (𝑟V
𝑐
)

exp (𝑟V
𝑐
) + exp (𝑟𝐴𝑓

𝑡
) + exp (𝑟𝐴0

𝑡
)

,

𝑤
𝑓

𝑡
=

exp (𝑟𝐴𝑓
𝑡
)

exp (𝑟V
𝑐
) + exp (𝑟𝐴𝑓

𝑡
) + exp (𝑟𝐴0

𝑡
)

,

𝑤
0

𝑡
=

exp (𝑟𝐴0
𝑡
)

exp (𝑟V
𝑐
) + exp (𝑟𝐴𝑓

𝑡
) + exp (𝑟𝐴0

𝑡
)

.

(8)

Thehigher attractive strategywill be chosen by the agents.
The parameter 𝑟, in (8), is called the intensity of choice
and measures the sensitivity of mass of agents selecting
the trading strategy with higher fitness measure. In such
adaptive beliefs, financial market prices and fractions of
trading strategies coevolve over time.

2.3. Basic Parameter Settings. Model parameter settings are
determined following Tversky and Kahneman [27], Winker
and Gilli [43], Farmer and Joshi [34], and Westerhoff [22].
The values of model parameters are chosen so that the model
can mimic the dynamics of real financial markets.

The main idea behind choosing specific values of the
parameters can be summarized as follows. The reaction
parameters of technical and fundamental trading rules (mul-
tiplied by the price settlement parameter) are between zero
and 0.1 for daily data.

To keep the autocorrelation4 of raw returns5 close to zero,
parameters 𝑏 and 𝑐 are chosen as follows. The population of
the chartists is matched with the population of the funda-
mentalists, so that the positive short-term autocorrelations
induced by the chartists are cancelled by the negative short-
term autocorrelation of the fundamentalists. Therefore, the
reaction parameters of technical and fundamental trading
rules are set to be the same.

The value of 𝜎
𝛽
is assumed to be higher than 𝜎

𝛾
to reflect

the level of noise associated with technical trading rule. The
value of𝑚 is assumed to be near one, so the agents have good
memory. Also, the value of 𝑟 reflects the bounded rationality
in choosing the trading rule with highest fitness measure.
Finally, many experiments estimate loss aversion parameter
to be in the neighbourhood of 2; that is, the utility of losses
is twice as great as the utility of gains [27, 41]. Experimental
estimation of𝜆 has been estimated byTversky andKahneman
[28], such as 𝜆 = 2.25. The values of model parameters are
summarised in Table 1. In the following section we study the
evolutionary dynamics of our proposed model.

3. Adaptive Beliefs and Asset Pricing Dynamics

In this section we discuss the dynamics of our model by
simulation. In Section 3.1, we describe the simulation design.
The extent to which our model is able to explain statistical
properties of real financial markets is studied in Section 3.2.

In addition to this, the results obtained from the Monte
Carlo analysis we performed are illustrated. Finally, we study
the effect of loss aversion on the adaptive belief system and
market quality.

3.1. Simulation Design. To implement the proposed artificial
financial market, we develop an agent-based simulation
model using Netlogo platform. NetLogo provides an envi-
ronment for simulating natural and social phenomena [45].
It is particularly well suited for modelling complex systems
evolving over time. At initialization, all parameters of the
model are equal to the values defined in Table 1, and values
of all variables 𝑝

𝑡
, 𝑝
𝑡−1

, 𝑤𝑐
𝑡
, 𝑤
𝑓

𝑡
, 𝑤0
𝑡
, 𝐷𝑐
𝑡−2

, 𝐷𝑓
𝑡−2

, 𝐷
𝑐

𝑡
, 𝐷𝑓
𝑡
, 𝐴𝑐
𝑡−1

,
𝐴
𝑓

𝑡−1
,𝐴𝑐
𝑡
, and𝐴𝑓

𝑡
are set to zero. To implement our simulation

framework, we follow the steps listed in Algorithm 1. We
investigate the performance of 5000 simulation runs, each
containing 4120 daily observations. In the following section,
simulation results are displayed.

3.2. Simulation Results and Analyses. Many researchers study
the empirical behaviour of financial returns, and they find
that most financial markets share the same statistical prop-
erties [5–7, 46], such as (i) price bubbles and market crashes,
(ii) random-walk price behaviour, (iii) fat-tailed return distri-
butions, (iv) power-law tails, with a tail index somewhere in
the regions 2–5, (v) excess volatility, (vi) volatility clustering,
(vii) absence of autocorrelations in asset returns, and (viii)
persistent long-range memory of volatility.

In the following, we explore the extent to which our
model is capable to replicate these stylized facts. Also, to
investigate the effect of loss aversion on the macro and micro
dynamics of the artificial market, a benchmark case, where
𝜆 = 1, is included in our analyses. To the rest of this
section, the market populated with loss-neutral chartists,
where 𝜆 = 1, and the market populated with loss averse
chartists, where 𝜆 = 2.25, will be named MARKET1 and
MARKET2, respectively. Moreover, the time series generated
by MARKET1 and MARKET2 will be referred to as MOD1
and MOD2, respectively.

In the following, our exposition mainly rests on the
behaviour of the stock index of Egypt (EGX 30). Its time
series covers the period from January 1, 1998, to November
16, 2014, and consists of 4123 daily observations.The data was
downloaded from the Egyptian Stock Exchange website6. We
apply time series analysis and econometric measures using
Excel and MatLab software. The main results were reported
for both MARKET1 and MARKET2. Also, we perform large
Monte Carlo simulations to check the robustness of our
results.

Before we start a comprehensive Monte Carlo analysis,
we will first explore a representative simulation run. The
simulation run contains 4120 daily observations, mirroring
a period of about 16 years. Figure 1 shows the evolution of (a)
EGX 30 daily quotes along with the evolution of log-prices of
(b) MOD1 and (c) MOD2, respectively.

Figure 1(a) illustrates the behaviour of EGX 30 daily
quotes, which displays significant bubbles and crashes. For
example, we observe strong price appreciations betweenMay
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(1) Initialize
(2) repeat n times
(3) for 𝑡 = 2 :T do
(4) submit orders use (2) or (3)
(5) evaluate trading rules use (4), (5) and (6)
(6) If [𝐴𝑐

𝑡
≥ 0] then V

𝑐
= 𝐴
𝑐

𝑡
;

(7) else V
𝑐
= 𝜆𝐴
𝑐

𝑡
;

(8) end if
(9) Calculate weights use (8)
(10) Update price use (1)
(11) end do
(12) end loop

Algorithm 1: Pseudocode for the proposed artificial financial market.

Table 1: Parameters for the simulation of the financial markets under loss aversion behavioural bias.

Parameter Value Description of parameter
𝑎 1 Price settlement parameter
𝑏 0.04 Extrapolating parameter
𝑐 0.04 Reverting parameter
𝑚 0.975 Memory parameter
𝑟 300 Intensity of choice parameter
𝜎
𝛼

0.01 Standard deviation of the random factors affect the price settlement process
𝜎
𝛽

0.05 Standard deviation of the additional random orders of technical trading
𝜎
𝛾

0.01 Standard deviation of the additional random orders of fundamental trading
𝜆 2.25 Loss aversion parameter

2006 and March 2008. Over this period, the EGX 30 rose
from 6000 to 11937 points, gaining about 61 percent of its
value. After March 2008, however, the price started to drop
sharply. In January 2009, the price of the EGX 30 fell below
4596 points, losing about 56 percent of its value7. A detailed
history of financial crises can be found in Griffith-Jones et al.
[47].

From Figure 1(c), we observe that prices fluctuate around
their fundamental values. Our model is able to generate
substantial bubbles and crashes. Between periods 1800 and
1880, for instance, the price began to drop sharply. Also, for
example, between periods 3650 and 3800, we observe sharp
price appreciations with stock prices deviating more than
50 percent from their fundamental values. It should not be
overlooked that loss aversion contributes to market quality8

by reducing distortion (dist = (1/𝑇)∑
𝑇

𝑡=1
|𝐹
𝑡
− 𝑝
𝑡
|) [48]. In

Figure 1(b), between periods 3650 and 3800, for instance, we
observe the further amplifying price movements. Moreover,
computing the distortion for the MOD2 (MOD1) reveals a
value of 8.8 (11.4) percent.

Figure 2 displays daily returns of (a) the EGX 30, (b)
the MOD1, and (c) the MOD2, respectively, over the same
time horizon as in Figure 1. Note that Figure 2 shows another
characteristic feature of stock market, which is excessive
price volatility. Clearly, prices fluctuate strongly, and extreme
returns of the EGX 30 reach up to ±18 percent. To measure
volatility, we follow Guillaume et al. [46] and calculate the
average absolute returns (vol = (1/𝑇)∑

𝑇

𝑡=1
|𝑟
𝑡
|), which

produce a value of 1.23 percent per day. As stated by Shiller
[49], such volatility value is too large to be explained by
fundamental crashes alone. However, these values of EGX 30
are considered to be much higher than other developed stock
markets9; this is in good agreement with results obtained
from empirical data of developed and emerging financial
markets [50]. The distribution of emerging markets’ returns
exhibits fatter tails than that of developed markets, in which
case the volatility is infinite as found byMandelbrot [5] in his
famous study of cotton prices.

Figures 2(b) and 2(c) show the daily returns of the
MOD1 and MOD2, respectively. Extreme returns reach up
to ±17.4 for both cases. However, computing the average
absolute returns for the MOD1 (MOD2) reveals a value of
1.5 (1.7) percent. Therefore, loss aversion behavioural bias
seems to improve market quality through reducing excessive
price volatility [48]. Furthermore, Figure 2 displays another
stylized fact of stock markets namely volatility clustering,
where grey rectangles exemplify periods of high volatility.
This fact is stated by Mandelbort [5] as both small and large
fluctuations are clustered; that is, periods of high volatility
alternate with periods of low volatility. This fact displays
significant long memory effects in financial time series.

Another stylized fact concerns the distribution of returns
and its fat tail feature. Figure 3 presents an evidence for this
statistical property. The probability density functions of (a)
empirical EGX 30, (b)MOD1, and (c)MOD2 returns, respec-
tively, (solid lines) are compared with those of normally
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Figure 1: The evolution of index prices (log-prices) of (a) EGX 30, (b) the MOD1, and (c) the MOD2, respectively. The dashed lines give
a benchmark of the ±50 percent deviation from the fundamentals. (c) shows the extent of our model to produce random walk prices and
bubbles and crashes. Comparing Panels (b) and (c) reveals that the model populated with loss aversion chartists is more stable than that with
loss-neutral chartists.
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Figure 2: The returns of (a) the EGX 30, (b) the MOD1, and (c) MOD2.The panels give evidence for excessive prices volatility and clustered
volatility properties. The grey rectangles exemplify periods of high volatility. The clustered volatility property can be seen from the presence
of sustained periods of high or low volatility.

distributed returns with the same means and standard devi-
ations (dashed lines). We observe that the distributions of
empirical returns exhibit a higher concentration around the
mean, thinner shoulders, and more probability mass in their
tails.

A power law may give a useful approximation to the
tail behaviour of empirical data, but there is no reason to
anticipate that it will appear in every market. One way to
investigate the power-law behaviour is suggested by Clauset
et al. [51]. Evidence for a power-law tails is presented in
Figure 4. Here we plot, on a log-log scale, the complements of

the cumulative distributions of normalized EGX 30, MOD1,
andMOD2 returns, respectively. For comparison, the dashed
lines give the complements of the cumulative distributions of
the standard normal distributions.

Now, the exponent𝛼 of the Pareto distribution for the tails
is defined as Pr(|𝑟

𝑡
| > 𝑥) ≈ 𝑐𝑥

−𝛼. Regression in logarithmic
coordinates reveals an estimate of 2.45 for the MOD1 and an
estimate of 2.39 for the MOD2; these figures are quite close
to the estimate for the EGX 30 (2.37) and conclude that the
tails decay at an exponential rate. Note that lower values for 𝛼̂

𝑘

imply fatter tails.Therefore, distribution of returns under loss
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Figure 3: The probability density functions of returns. The panels show the empirical distribution of (a) the EGX 30, (b) the MOD1, and
(c) the MOD2 returns. For comparison, the dashed lines give the probability density function of normally distributed returns with the same
means and standard deviations. The three returns time series at hand exhibit fat-tailed return distributions, that is, a higher concentration
around the mean, thinner shoulders, and more probability mass in their tails.

aversion exhibits fatter tails than that under loss neutrality.
This implies that our model is able to accurately replicate the
real return time series.

To reduce computational efforts, we use the so-called
Hill tail index estimator10 [53] 𝛼̂

𝑘
, to estimate the tail index.

Figure 5 displays the estimated values of 𝛼̂
𝑘
, for the smallest

and largest 𝑘 percent of the observations for (a) the EGX 30,
(b) the MOD1, and (c) the MOD2, respectively. Regressions
on the smallest (largest) 10 percent of the observations yield
an estimate of 3.47 (3.92) for the EGX 30, an estimate of
2.86 (3.51) for the MOD1, and an estimate of 3.26 (2.89) for
the MOD2. All results are in good overall agreement with
a universal cubic law (𝛼 ≈ 3) as proposed in the relevant
literature [54].

Figure 6 depicts the autocorrelation functions for raw and
absolute returns for the first 100 lags, for (a) the EGX 30,
(b) the MOD1, and (b) the MOD2, respectively. The dashed
lines present 95 percent confidence bands according to the
assumption of a white noise process.The EGX 30 raw returns
show autocorrelation coefficients that are not significant for
almost all lags except for the first lag. It is difficult to predict
future trend of the EGX 30 returns. However, persistence in
volatility can be observed from the autocorrelation functions

of absolute returns, where autocorrelation coefficients are
significant over 100 lags.

Note that Figures 6(b) and 6(c) illustrate the autocorre-
lation functions of raw and absolute returns for the MOD1
and the MOD2, respectively. The raw returns for both series
display autocorrelation coefficients that are not significant
over 100 lags. On the other hand, absolute returns show
significant long memory effects for more than 60 lags.
The significant positive autocorrelations in absolute returns
provide a quantitative sign of the clustered volatility, where
periods of high volatility are more likely to be followed by
periods of high volatility. The price dynamics of our market
closely resembles a random walk; this result is in good
agreement with the stylized facts stated by Mandelbrot [5],
Fama [6], and Cont [7].

Another astonishing fact of the stock markets is the self-
similarity in the sense of Mandelbrot [55]. A nonstationary
stochastic process11 (𝑋

𝑡
)
𝑡≥0

is said to be a self-similar if there
exists 𝐻 > 0 such that the processes (𝑋

𝑡
)
𝑡≥0

and (𝑡
𝐻
𝑋
1
)
𝑡≥0

have the same distribution [56]. Therefore, the distribution
of 𝑋
𝑡
for any 𝑡 can be fully determined by the distribution of

𝑋
1
; 𝐹
𝑡
(𝑥) = Pr(𝑡𝐻𝑋

1
≤ 𝑥) = 𝐹

1
(𝑥/𝑡
𝐻
). Clearly, if the tail

of 𝐹
𝑡
decays as a power law of 𝑥, then 𝐹

1
decays in the same
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Figure 4: Log-log plot of the complement of the cumulative distribution of normalized (a) EGX 30, (b) MOD1, and (c) MOD2 returns,
respectively. The three time series are scaled by their sample standard deviation and absolute returns have been taken to merge the positive
andnegative tails. For comparison, the dashed lines give the complements of the cumulative distributions of the standard normal distributions.
The solid line in each panel presents a performed log-log regression on the largest 30 percent of the observations. The estimated exponent 𝛼
(the slope of the linear regression) is 2.37 ± 0.026 for the EGX 30, 2.45 ± 0.021 for the MOD1, and 2.39 ± 0.02 for the MOD2. These are close
to the results obtained for empirical financial data.

manner. One way to quantify the self-similarity property is
to estimate the so-called scaling exponent (also called self-
similarity parameter).

Following Peng et al. [57], scaling exponents that quantify
power-law autocorrelations are computed using detrended
fluctuation analysis (DFA)12. Figure 7 displays the estimation
of the scaling exponent for raw 𝐻

𝑟
and absolute 𝐻

|𝑟|
returns

for (a) the EGX 30, (b) theMOD1, and (c) theMOD2, respec-
tively. Note linear relationship on a log-log scale between the
average fluctuation 𝐹(𝑛) and the time scale, where 𝑛 indicates

the presence of scaling in all the time series at hand. A value
of𝐻 = 0.5 corresponds to a white-noise process, while 0.5 <

𝐻 < 1 indicates long-range power-law autocorrelations.
Finally, 0 < 𝐻 < 0.5 indicates that large and small changes
of the time series are more likely to alternate.

The 𝐻
𝑟
yields a value of 0.49 for the MOD1 and a

value of 0.43 for the MOD2, which are close to that of 0.57
for the EGX 30, which indicate white-noise processes. The
scaling exponent 𝐻

|𝑟|
reveals a value of 0.88 for the MOD1

and a value of 0.84 for the MOD2, which are in line with
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Figure 5: The Hill plot of the smallest 10 percent observations (on the left-hand sides) and the largest 10 percent observations (on the right-
hand sides) for (a) the EGX 30, (b) the MOD1, and (c) the MOD2. Here we plot Hill tail-index estimator 𝛼̂

𝑘
against 𝑘. Regressions on the

smallest (largest) 10 percent of the observations yield a Hill tail index estimator equal to 3.47±0.039 (3.92±0.036) for the EGX 30, 2.86±0.042
(3.51 ± 0.042) for the MOD1, and 3.26 ± 0.045 (2.89 ± 0.61) for the MOD2.
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Figure 6:The autocorrelation functions of raw and absolute returns, respectively, for (a) the EGX 30, (b) theMOD1, and (c) theMOD2. From
Panel (a), the EGX 30 raw returns show autocorrelation coefficients that are not significant for almost all lags except for the first lag. However,
the absolute return time series reveal autocorrelation coefficients that are significant for up to 100 lags. In Panels (a) and (b), furthermore,
the raw returns display autocorrelation coefficients that are not significant for up to 100 lags while the absolute returns show significant long
memory effects for more than 60.

that of 0.81 for the EGX 30, showing long-range power-law
autocorrelations in absolute returns for the three time series
under investigation.

Finally, Figure 8 depicts the dynamics of the adaptive
belief system for (a) the MOD1 and (b) the MOD2, respec-
tively. We observe the swings between the trading strategies,
technical analysis (black region), fundamental analysis (grey
region), and no-trade (white region); there is no particular
strategy that dominates the others.The averageweight of each
strategy for the MOD2 (MOD1) is 𝑤𝑐

𝑡
≈ 27 (33) percent,

𝑤
𝑓

𝑡
≈ 39 (37) percent, and 𝑤0

𝑡
≈ 34 (30) percent; these results

indicate that loss aversion behavioural bias reduces fraction
of agents in the chartist group.

Note the price appreciations between periods 3650 and
3800 in Figures 1(b) and 1(c) correspond to the same periods
in Figures 8(a) and 8(b), respectively. We observe that
chartist fractions in MARKET1 are much higher than that
of MARKET2 which explain the further amplifying price
movements. However, the ensuing destabilization is only
temporary, as large deviations from the fundamental value are
recognized as gain opportunities by fundamentalists whose
actions then tend to stabilize the market.

To check the robustness of the MOD2 dynamics to
different parameter settings, Figure 9 shows repetitions of
simulation MOD2 with different parameter settings, using
the same seeds of the randomvariables as in Figure 1.The four
simulation runs are characterized by significant bubbles and
crashes, volatility clustering, and endogenous competition
between various trading strategies. We also observe periods

of high volatility corresponding to the periods of large
fractions of chartists in the market.

Summing up, features of the simulation run displayed in
Figures 1–7 resemble the behaviour of the real data presented
in the same figures remarkably well. Next, we check the
robustness of these results by performing a comprehensive
Monte Carlo analysis. Our analysis rests on 5000 simulation
runs, each containing 4120 observations for the MOD1 and
the MOD2. All simulation runs are based on the same
parameter settings (presented in Table 1, except for 𝜆) with
different seeds of the random variables.

Table 2 reports themean,maximum,minimum, standard
deviation, skewness, kurtosis, and Jarque-Bera (JB)13 of the
EGX 30 and estimates of the mean and the 5 percent, 25
percent, 50 percent, 75 percent, and 95 percent quantiles of
these statistics for the MOD1 and the MOD2, respectively.
Table 2 reveals, for instance, that estimates, for the MOD2,
of the standard deviation hover between 0.020 percent and
0.026 percent in 90 percent of the cases. The reported
standard deviation for the EGX 30 is quite close to these
figures. However, estimates, for the MOD1, of the standard
deviation hover between 0.021 percent and 0.027 percent in
90 percent of the cases, indicating larger degree of risk when
the market is populated with loss-neutral chartists.

Note the estimates of the standardized third moment14,
the skewness, for the MOD1 and the MOD2 indicate that
only 25 percent of the cases are negatively skewed and this
may due to the fatness of the return distribution. In addition,
estimates of the mean and the quantiles of the kurtosis,
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Figure 7: Estimation of self-similarity parameter𝐻. for raw and absolute returns, respectively, for (a) the EGX 30, (b) the MOD1, and (c) the
MOD2, respectively. To estimate the self-similarity parameter we follow Peng et al. [57] and perform a detrended fluctuation analysis (DFA).
A linear relationship on a log-log scale plot indicates the presence of power-law scaling. The slope of the line relating log(𝐹(𝑛)) to log(𝑛) is
the estimated scaling exponent, 𝑛 = {2

3
, . . . , 2

10
}. The scaling exponent𝐻

𝑟
yields a value of 0.57 ± 0.025 for the EGX 30, 0.49 ± 0.067 for the

MOD1, and 0.43 ± 0.054 for the MOD2, which are close to the theoretically expected value of the white-noise process. The scaling exponent
𝐻
|𝑟|
reveals a value of 0.81 ± 0.056 for the EGX 30, 0.88 ± 0.087 for the MOD1, and 0.84 ± 0.071 for the MOD2, which indicate persistent

long-range (power-law) autocorrelations in absolute returns for the three time series under investigation.
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Figure 8: Dynamics of the adaptive belief system: chartists (black region), fundamentalists (grey region), and inactive traders (white region)
for (a) the MOD1 and (b) the MOD2, respectively.
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Figure 9: Four repetitions of the simulation using different parameter values. Each set of the four panels shows from top to bottom the
evolution of stock prices, the asset returns, and the market shares of chartists (black region), fundamentalists (grey region), and no-trade
(white region), respectively.
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Table 2: Descriptive statistics. The table reports the mean, maximum, minimum, standard deviation, skewness, kurtosis, and Jarque-Bera
(JB) of the EGX 30 and estimates of the mean and the 5 percent, 25 percent, 50 percent, 75 percent, and 95 percent quantiles of these statistics
for the MOD1 and the MOD2, respectively. Computations are based on 5000 time series, each containing 4120 observations.

Series Mean/quantile Mean Max. Min. Std. dev. Skew. Kurt. JB
EGX 30 5.39 ∗ 10−4 0.18 −0.18 0.018 −0.33 12.04 14101.9

MOD1 (𝜆 = 1)

Mean 7.36 ∗ 10−7 0.14 −0.14 0.024 0.01 3.69 —
0.05 −6.73 ∗ 10−5 0.11 −0.18 0.021 −0.23 2.70 —
0.25 −2.02 ∗ 10−5 0.13 −0.15 0.023 −0.08 3.21 —
0.50 −7.27 ∗ 10−7 0.14 −0.14 0.024 0.01 3.64 —
0.75 1.94 ∗ 10−5 0.15 −0.12 0.025 0.11 4.10 —
0.95 6.82 ∗ 10−5 0.18 −0.11 0.027 0.25 4.89 —

MOD2 (𝜆 = 2.25)

Mean −6.19 ∗ 10−7 0.14 −0.14 0.023 0.01 4.39 —
0.05 −6.82 ∗ 10−5 0.11 −0.18 0.020 −0.25 3.28 —
0.25 −1.86 ∗ 10−5 0.13 −0.15 0.021 −0.10 3.85 —
0.50 −7.31 ∗ 10−7 0.14 −0.14 0.023 0.01 4.32 —
0.75 1.57 ∗ 10−5 0.15 −0.13 0.024 0.01 4.82 —
0.95 6.08 ∗ 10−5 0.18 −0.11 0.026 0.27 5.77 —

Table 3:TheHill tail index estimator 𝛼̂
𝑘
for the left and right tails.The table reports the Hill tail index estimators 𝛼̂

𝑘
for 𝑘 ∈ {2.5, 5, 10} percent

of the smallest (left-tail) and largest (right-tail) returns of the EGX 30 along with estimates of the mean, the 5 percent, 25 percent, 50 percent,
75 percent, and 95 percent quantiles of these statistics for the MOD1 and the MOD2, respectively, with asymptotic 95% confidence intervals
shown in brackets. Computations are based on 5000 time series, each containing 4120 observations.

Series Mean/quantile Left-tail exponent Right-tail exponent
𝛼̂
2.5% 𝛼̂

5% 𝛼̂
10% 𝛼̂

2.5% 𝛼̂
5% 𝛼̂

10%

EGX 30 3.39 (3.24, 3.55) 3.32 (3.24, 3.39) 3.47 (3.43, 3.51) 3.56 (3.43, 3.68) 3.72 (3.66, 3.78) 3.92 (3.88, 3.95)

MOD1 (𝜆 = 1)

Mean 3.29 3.54 3.45 3.31 3.56 3.47
0.05 2.69 2.98 3.01 2.71 3.00 3.02
0.25 3.02 3.29 3.24 3.05 3.31 3.27
0.50 3.27 3.53 3.43 3.28 3.55 3.45
0.75 3.53 3.78 3.63 3.55 3.80 3.66
0.95 3.93 4.17 3.95 3.96 4.18 3.97

MOD2 (𝜆 = 2.25)

Mean 3.27 3.52 3.40 3.38 3.61 3.46
0.05 2.68 2.97 2.96 2.68 2.97 2.96
0.25 3.01 3.28 3.21 3.01 3.28 3.20
0.50 3.25 3.50 3.39 3.25 3.50 3.39
0.75 3.52 3.74 3.59 3.52 3.74 3.59
0.95 3.90 4.13 3.90 3.90 4.13 3.90

the standardized fourthmoment, are all greater than 3, which
are higher than that of the normal distribution. However, the
kurtosis of MOD2 is much higher than that for the MOD1,
indicating fatter tail distributions of the returns under loss
aversion than that under loss neutrality.

Table 3 contains the Hill tail index estimators 𝛼̂
𝑘
for

𝑘 ∈ {2.5, 5, 10} percent of the smallest (left-tail) and largest
(right-tail) returns for the EGX 30 along with estimates of
the mean, the 5 percent, 25 percent, 50 percent, 75 percent,
and 95 percent quantiles of these statistics for the MOD1
and the MOD2, respectively. For the MOD2, average Hill
tail-index estimates of the largest and smallest 10 percent
observations are in line with those for the EGX 30. For
instance, considering the smallest 5 percent of observations,
estimates of the tail indices reveal values of 3.28 and 3.74 for
the lower and upper quantile. These are in accordance with

the reported value for the EGX 30 (3.32). In addition, taking
the largest 5 percent of observations into account estimates
of the tail indices equal 3.28 and 3.74 for the lower and
upper quantile. The reported value for the EGX 30 (3.72) lies
within this range. For the MOD1, however, the Hill tail index
estimates are higher than those of the MOD2. For instance,
taking the largest 5 percent of observations into account,
we obtain tail indices equal to 3.31 and 3.80 for the lower
and upper quantile. As stated before, lower values of the tail
indices imply fatter tail. Therefore, we conclude that MOD2
generates realistic distribution of returns.

To continue investigating the robustness of our results,
Table 4 reports the autocorrelation function of raw returns
AC𝑙
𝑟
for lags 𝑙 ∈ {1, 2, 3}, and the autocorrelation function

of absolute returns AC𝑙
|𝑟|

for lags 𝑙 ∈ {1, 20, 50, 100} for the
EGX 30 along with estimates of the mean, the 5 percent, 25
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Table 4: The autocorrelation functions of raw and absolute returns. The table contains the autocorrelation function of raw returns AC𝑙
𝑟
for

lags 𝑙 ∈ {1, 2, 3}, and the autocorrelation function of absolute returns AC𝑙
|𝑟|
for lags 𝑙 ∈ {1, 20, 50, 100} for the EGX 30 along with estimates

of the mean, the 5 percent, 25 percent, 50 percent, 75 percent, and 95 percent quantiles of these statistics for the MOD1 and the MOD2,
respectively. Computations are based on 5000 time series, each containing 4120 observations.

Series Mean/quantile AC1
𝑟

AC2
𝑟

AC3
𝑟

AC1
|𝑟|

AC20
|𝑟|

AC50
|𝑟|

AC100
|𝑟|

EGX 30 0.18 0.02 0.04 0.29 0.09 0.05 0.03

MOD1 (𝜆 = 1)

Mean 0.02 0.01 0.003 0.25 0.16 0.08 0.02
0.05 −0.02 −0.03 −0.04 0.20 0.10 0.02 −0.03
0.25 0.01 −0.01 −0.01 0.23 0.13 0.05 −0.003
0.50 0.02 0.01 0.004 0.25 0.16 0.07 0.02
0.75 0.04 0.02 0.02 0.27 0.18 0.10 0.04
0.95 0.07 0.05 0.04 0.30 0.21 0.14 0.07

MOD2 (𝜆 = 2.25)

Mean 0.02 0.01 0.004 0.28 0.17 0.08 0.02
0.05 −0.02 −0.04 −0.04 0.23 0.11 0.02 −0.03
0.25 0.004 −0.01 −0.01 0.26 0.15 0.05 −0.001
0.50 0.02 0.01 0.004 0.28 0.17 0.08 0.02
0.75 0.04 0.02 0.02 0.30 0.20 0.11 0.04
0.95 0.07 0.05 0.05 0.33 0.23 0.15 0.09

Table 5: The Hurst index for the raw and absolute returns,
respectively. The table reports the scaling exponent of raw returns
𝐻
𝑟
and the scaling exponent of absolute returns 𝐻

|𝑟|
for the EGX

30 along with estimates of the mean, the 5 percent, 25 percent, 50
percent, 75 percent, and 95 percent quantiles of these statistics for the
MOD1 and theMOD2, respectively, with asymptotic 95%confidence
intervals shown in brackets. Computations are based on 5000 time
series, each containing 4120 observations.

Series Mean/quantile 𝐻
𝑟

𝐻
|𝑟|

EGX 30 0.57 (0.55, 0.59) 0.81 (0.76, 0.87)

MOD1 (𝜆 = 1)

Mean 0.48 0.86
0.05 0.41 0.79
0.25 0.44 0.83
0.50 0.47 0.86
0.75 0.51 0.89
0.95 0.57 0.92

MOD2 (𝜆 = 2.25)

Mean 0.48 0.87
0.05 0.40 0.80
0.25 0.44 0.85
0.50 0.47 0.88
0.75 0.51 0.90
0.95 0.57 0.93

percent, 50 percent, 75 percent, and 95 percent quantiles of
these statistics for theMOD1 and theMOD2, respectively. For
the EGX 30, the correlation coefficient exhibits a high value
on lag 1 of about 0.18, though the autocorrelation coefficients
are not significant for the rest 100 lags. For the MOD1 and
the MOD2, estimates of the autocorrelation coefficients AC𝑙

𝑟

reveal that price increments are mainly uncorrelated. This
is in accordance with most real financial markets, as future
prices cannot be predicted [7]. On the other hand, for the
MOD2 (MOD1), autocorrelation coefficients AC𝑙

|𝑟|
show a

median value of 0.28 (0.25) for the first lag, which is quite

close to that of the EGX 30 (0.29). No significant difference
between the autocorrelation coefficients for the MOD1 or the
MOD2 has been detected.

Now, we check the robustness of the scaling power law.
Table 5 reports the scaling exponent of raw returns 𝐻

𝑟
and

the scaling exponent of absolute returns𝐻
|𝑟|
for the EGX 30

along with estimates of the mean, the 5 percent, 25 percent,
50 percent, 75 percent, and 95 percent quantiles of these
statistics for the MOD1 and the MOD2, respectively. For the
MOD2 (MOD1) 𝐻

𝑟
is equal to 0.44 (0.44) and 0.51 (0.51)

for the lower and upper quantile, which are close to that for
the EGX 30 (0.57). This is in good agreement with absence
of long memory in empirical financial returns and implies
a small degree for predicting price changes. In addition, for
the MOD2 (MOD1), estimates of 𝐻

|𝑟|
, for instance, hover

between 0.80 (0.79) and 0.93 (0.92) in 90 percent of the cases,
which are close to the value reported for the EGX 30 (0.81).
These values show persistent long-range autocorrelation in
absolute return series. Also, no significant difference between
the scaling exponents for the MOD1 or the MOD2 has been
detected.

To summarize our results so far, the illustrated figures and
the performed Monte Carlo analysis show that MARKET2 is
able to generate return time series possessing detailed stylized
facts of real financial data. These properties include fat-
tailed return distributions, absence of autocorrelation in raw
returns, persistent long memory of volatility, excess volatility,
volatility clustering, and power-law tails.

We perform a Monte Carlo analysis to check the robust-
ness of the MOD1 and the MOD2 evolutionary dynamics.
Table 6 reports estimates of the mean and the 5 percent, 25
percent, 50 percent, 75 percent, and 95 percent quantiles of
the volatility, the distortion, and strategy weights: 𝑤𝑐

𝑡
, 𝑤𝑓
𝑡
,

and 𝑤
0

𝑡
for the MOD1 and the MOD2, respectively. For the

MOD2, the average volatility is equal to 1.60 percent, which
is slightly higher than that of the EGX 30 (1.23 percent).
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Table 6: Statistical properties and evolutionary dynamics of the
agent-basedmodel.The table contains estimates of themean and the
5 percent, 25 percent, 50 percent, 75 percent, and 95 percent quan-
tiles of the volatility, the distortion, and strategy weights: 𝑤𝑐

𝑡
, 𝑤𝑓
𝑡
,

and 𝑤
0

𝑡
for the MOD1 and the MOD2, respectively. Computations

are based on 5000 time series, each containing 4120 observations.

Series Mean/quantile Volatility Distortion 𝑤
𝑐

𝑡
𝑤
𝑓

𝑡
𝑤
0

𝑡

MOD1
(𝜆 = 1)

Mean 1.70 12.44 34 35 30
0.05 1.51 8.80 29 33 27
0.25 1.61 10.46 32 34 29
0.50 1.70 12.02 34 36 31
0.75 1.79 13.96 36 37 32
0.95 1.92 17.80 40 38 34

MOD2
(𝜆 = 2.25)

Mean 1.60 11.53 29 38 33
0.05 1.40 8.02 23 35 29
0.25 1.50 9.65 26 37 32
0.50 1.59 11.07 29 38 33
0.75 1.68 12.91 31 39 35
0.95 1.82 16.44 35 41 37

Moreover, estimates of the distortion hover between 8.02
percent and 16.44 percent in 90 percent of the cases. These
values indicate a substantial boom-bust cycles in almost all
simulation runs. Generally speaking, all estimates of the
mean and quantiles reveal that agents prefer to follow the
fundamental analysis the most, then the no-trade strategy,
and the technical analysis the least.

Now, the impact of loss aversion on the fractions of agents
within each strategy block deserves greater attention. Is the
technical analysis least appealing due to the loss aversion
behavioural bias? What is the effect of loss aversion on the
adaptive belief system and on the pricing dynamics? To
answer these questions we consider the benchmark case, 𝜆 =

1, where chartists perceive losses and gains symmetrically.
Table 6 reveals that the average volatility is equal to 1.70
percent, which is higher than that of the MOD2. Also,
estimates of the distortion hover between 8.80 percent and
17.80 percent in 90 percent of the cases. The median of the
market shares are 𝑤𝑐

𝑡
= 34 percent, 𝑤𝑓

𝑡
= 36 percent, and

𝑤
0

𝑡
= 31 percent. Therefore, on average, no trading strategy

is preferred over the others. This implies that the agents in
MARKET2 prefer to follow fundamental analysis more than
technical analysis due to the loss aversion behavioural bias.
In addition to this, the distortion and volatility in MARKET1
seem to be higher thanMARKET2 due to the higher fractions
of the chartists. Obviously, the market populated with loss-
averse chartists is more stable and resembles real markets
behaviour.

4. Conclusions

In 1979, Kahneman and Tversky proposed their famous
psychological theory, the prospect theory, in order to under-
stand the psychological motivations for traders’ behaviours.
The prospect theory considers loss aversion as one of

the main behavioural biases that affect traders’ decisions
under uncertainty. The theory states that traders recognize
their losses more than twice their recognition of gains.

To increase our understanding of traders’ behaviour and
their adaptive beliefs, we develop an agent-based financial
market model. Agent-based modelling provides the link
between macro and micro dynamics. In our model, agents
can trade following either stochastic technical or stochastic
fundamental trading rules. While technical analysis builds
decisions upon past price trends, fundamental analysis
advises betting on mean reversion. Since chartists are loss
averse, any losses following technical analysis cause a rapid
switching to other groups. Price is adjusted by the market
maker according to the net submitted orders without any
intervention from her/him.

Simulations reveal that ourmodel is capable of explaining
a number of important stylized facts of stockmarkets, such as
random walk price behaviour, bubbles and crashes, fat-tailed
return distributions, excess volatility, and volatility clustering.
In addition to these, we investigate the presence of power-law
tails. The observed estimates of the exponent 𝛼 of the Pareto
distribution for the tails reveal that all results are in good
overall agreement with a universal cubic law as proposed
in the relevant literature [54]. Another striking fact is the
scaling power law (self-similarity) of the stock markets in
the sense of Mandelbrot [55]. To estimate scaling exponents
that quantify power-law autocorrelations, we use detrended
fluctuation analysis following Peng et al. [57]. The observed
scaling exponents indicate the presence of long-range power-
law autocorrelations in the underlying dynamics.We propose
that alternation between the periods of high and low volatility
due to continuous belief adaptation yield the power-law
autocorrelations in absolute returns and power-law tails in
the distribution of returns.

The dynamics of our model can be summarized as
follows. The farther the asset prices deviate from their
fundamental values, the more aggressive the chartists will
become. The increase in market shares of the chartists will
increase the volatility causing a bubble or a crash to emerge.
However, the loss aversion behavioural bias improve the
market byminimizing its volatility and distortion. As the dis-
tortion reaches its maximum value the fundamental analysis
becomes more appealing for traders to follow. The increase
in switching to the fundamental analysis will pull asset prices
to their fundamentals and the volatility diminishes. Due
to the market dynamics, no trading strategy dominates the
others.This causes substantial longmemory effects in returns
volatility.

To sum up, loss aversion directly affects the adaptive
belief system as recognized losses stimulate chartists to
adopt fundamental trading or stay inactive. This adapta-
tion works for the market stability and prices efficiency.
The simulation results proposed the agent-based model to
successfully replicate the macro behaviour of real financial
markets and, consequently, to enhance our understanding
of asset pricing dynamics. Therefore, our model serves as
a good test-bed for policy makers to explore the effect of
different regulatory policies which improves the decision
making process.
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Endnotes

1. This result was observed by Arthur [2], as in heteroge-
neous world the rational agent has to know perfectly the
beliefs of other agents, which is not possible in reality.

2. The fundamental value is assumed to be constant, such
that 𝐹

𝑡
= 0. This assumption enables us to refer market

crashes to price dynamics and to eliminate the possibility
of fundamental crashes.

3. A discrete choice model specifies probabilities 𝑃(𝑖 | 𝑧, 𝜃)
for each set of alternatives {𝑖} among which the decision
maker can choose. The exogenous variables 𝑧 describe
observable attributes and characteristics of the decision
maker and available alternatives to her/him.The param-
eters 𝜃 are to be estimated from the observed choices of a
sample of decision makers. The choice probabilities are
determined by the multinomial logit model as follows:
𝑃(𝑖 | 𝑧, 𝜃) = exp𝑉

𝑖
(𝑧, 𝜃)/∑

𝑀

𝑗=1
exp𝑉
𝑗
(𝑧, 𝜃) where 𝑀

is the number of available alternatives. And 𝑉
𝑖
(𝑧, 𝜃)

is a summary statistic measuring the attractiveness of
alternative 𝑖. It has the linear form of 𝑉

𝑖
(𝑧, 𝜃) = 𝑧

𝑖
⋅ 𝜃,

for 𝑖 = 1, 2, . . . ,𝑀 [42].
4. Autocorrelation function (ACF) studies the linear

dependence between 𝑟
𝑡
and its past values 𝑟

𝑡−𝑙
; the

correlation coefficient between 𝑟
𝑡
and 𝑟
𝑡−𝑙

is named lag-
𝑙 autocorrelation of 𝑟

𝑡
and it is denoted by AC𝑙

𝑟
, which

can be found by AC𝑙
𝑟
= Cov(𝑟

𝑡
, 𝑟
𝑡−𝑙
)/√Var(𝑟

𝑡
)Var(𝑟

𝑡−𝑙
) =

Cov(𝑟
𝑡
, 𝑟
𝑡−𝑙
)/Var(𝑟

𝑡
) = 𝛾
𝑙
/𝛾
0
, where the property of weak

stationarity Var(𝑟
𝑡
) = Var(𝑟

𝑡−𝑙
) is used; from the

definition, AC0
𝑟
= 1, AC𝑙

𝑟
= AC−𝑙

𝑟
and −1 ≤ AC𝑙

𝑟
≤ 1

[44].
5. The returns are defined as 𝑟

𝑡
= log(𝑃

𝑡
/𝑃
𝑡−1

) = 𝑝
𝑡
− 𝑝
𝑡−1

,
where 𝑝

𝑡
= log(𝑃

𝑡
) [44].

6. http://www.egx.com.eg/english/indexData.aspx?type
=1&Nav=1.

7. This data was extracted from the EGX annual reports
from 2006 to 2009.

8. Distortion and volatility are considered to be important
determinants of market quality [48].

9. Such as a value of 0.86 percent for FTSE 100, 0.86
percent for S&P 500, and 1.09 percent for DAX; these
statistics are our own calculations of data collected
for the FTSE 100, the S&P 500, and the DAX from
http://www. Finance.Yahoo.com for the same period of
the EGX 30.

10. Hill tail-index estimator 𝛼̂
𝑘

is defined as, 𝛼̂
𝑘

=

((1/𝑛
𝑘
) ∑
𝑛𝑘−1

𝑖=1
log𝑅
𝑇−𝑖

− log𝑅
𝑇−𝑛𝑘

)
−1, where 𝑘 is the

percentage of observations located in the tail and 𝑛
𝑘
=

𝑘 ∗ 𝑇 against 𝑘. To estimate tail index, the data elements
are required to be ordered from largest to smallest such
that 𝑅

𝑇
> 𝑅
𝑇−1

> ⋅ ⋅ ⋅ > 𝑅
𝑇−𝑛𝑘

> ⋅ ⋅ ⋅ > 𝑅
1
. This process is

applied to the right tail and can be reversed to obtain the
left-tail exponent by using absolute returns. However,
the value of tail exponent 𝛼̂

𝑘
is very sensitive to the

choice of 𝑘 [18]. Thus, Huisman et al. [52] recommend
calculating 𝛼̂

𝑘
for different values of 𝑘 then regressing

these on 𝑘 such as 𝛼̂
𝑘
= 𝑐
1
+ 𝑐
2
𝑛
𝑘
+ 𝜖
𝑛𝑘
. The tail index

estimate would be given by 𝛼̂
𝑘
= 𝑐
1
, the intercept, with

standard error 𝜎
𝛼
= 𝛼̂
𝑘
/√𝑛
𝑘
.

11. To put it simply, a nonstationary stochastic process is
said to be self-similar in a statistical sense, if a rescaled
version of a small part of its time series has the same
statistical distribution as the larger part.

12. To estimate the self-similarity parameter we follow Peng
et al. [57] and perform a detrended fluctuation analysis
(DFA). To perform a DFA algorithm, the return time
series of total size𝑇 is first integrated,𝑦(𝑛) = ∑

𝑛

𝑡=1
(𝑟
𝑡
−𝑟),

where 𝑟 is the average return interval. The integrated
time series is divided into boxes of equal time scale, 𝑛.
In each box of scale 𝑛, a least-square line is fitted to the
data, where 𝑦

𝑛
(𝑘) represents the trend in the box. Next,

we detrend the integrated series by subtracting the local
trend 𝑦

𝑛
(𝑘), in each box. Then, the root mean-square

fluctuations of this integrated and detrended series is
computed by 𝐹(𝑛) = √(1/𝑇)∑

𝑇

𝑘=1
[𝑦(𝑘) − 𝑦

𝑛
(𝑘)]
2. This

computation is repeated over all the time scale to picture
the relation between the average fluctuation 𝐹(𝑛) and
the time scale, 𝑛. A linear relationship on a log-log scale
plot indicates the presence of scaling. The slope of the
line relating log(𝐹(𝑛)) to log(𝑛) is the estimated scaling
exponent.

13. The Jarque-Bera (JB) test statistic for normality
is defined as follows [44]: JB = 𝑇[𝑆(𝑟

𝑡
)
2
/6 +

(𝐾(𝑟
𝑡
) − 3)
2
/24], where 𝑡 = 1, 2, . . . , 𝑇, 𝑆(𝑟

𝑡
) is the

skewness, and 𝐾(𝑟
𝑡
) is the kurtosis. JB is asymptotically

distributed as 𝜒2(2).

14. For fat-tail distributions the first and second moments
are not enough to describe the data [44]. In large samples
of normally distributed data, estimators of skewness
and kurtosis are asymptotically converging to normally
distribution with means 0 and 3 and variances 6/T and
24/T, respectively, for large samples, where 𝑇 represents
the daily data sample size.
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