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a b s t r a c t

In this paper an approximate analytical solution for the Frank-Kamenetskii equation modeling thermal
ignition without the depletion of the combustibles in a spherical annulus and non-isothermal zero order
reaction in spherical catalyst particle is presented. The approximate solution is compared with the
numerical solution and is in good agreement with the numerical solution. The approximate solution
obtained is valid for all values of the distance parameter. Multiple solutions occur for some range of
Frank-Kamenetskii parameter (k). The multiplicity is infinite for the case of a solid sphere and k ¼ 2.
Interesting relation is obtained for k at the turning points. For the non-isothermal zero order reaction
in a spherical catalyst particle the effectiveness factor was obtained using the approximate solution.
The values of the effectiveness factor obtained from the approximate solution are accurate compared
with the exact values obtained from numerical computations.
� 2017 The Author. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The problems of thermal explosion or ignition of a combustible
material in a hollow sphere and zero order reaction in non-
isothermal spherical catalyst particle are examined in this paper.
The governing equation was derived by Frank-Kamentskii. The
steady state equation in an enclosure is given by

k
d2T

dR2 þ
s
R
dT
dR

 )
¼ �ð�DHÞA exp

�E
RgT

� �
ð1Þ

Here, the constant k is the thermal conductivity, ð�DHÞ is the
heat of reaction, Arrhenius kinetics is assumed with A the fre-
quency factor, E the energy of activation of the chemical reaction,
Rg is the gas constant, and T denotes the absolute temperature.
In addition we assumed that consumption of combustible material

is neglected, i.e, zero order reaction. R is the spatial variable
expressing the distance from the center of the enclosure. s is a
shape factor that takes a value of 0 for an infinite slab, 1 for an infi-
nite cylinder and 2 for a sphere.

Introduce the following change of variables;

u ¼ EðT � T0Þ
RgT

2
0

; e ¼ RT0

E
; r ¼ R

a
; k ¼ ð�DHÞEAa2

kRgT
2
0

exp
�E
RgT0

� �

to obtain

d2u

dr2
þ s
r
du
dr

¼ �k exp
u

1þ eu

� �
ð2Þ

where a is the radius of the enclosure and T0 is the ambient absolute
temperature.

For small e (Large activation energy), we can approximate Eq.
(2) by

d2u

dr2
þ s
r
du
dr

¼ �k expðuÞ ð3Þ

This equation is the Frank-Kamenetskii equation (Frank-
Kamenetskii, 1955). Using e = 0 in Eq. (2) is called Frank-
Kamenetskii approximation and k is called Frank-Kamenetskii
parameter. If k is greater than a critical value, explosion occurs
and there is no solution for the equation. For k less than the critical
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value, two solutions exist for the case of slab and cylinder. For the
case of a sphere for different values of k we can have no solution,
one, two or multiple number of solutions. The solution is charac-
terized by infinite number of solutions at k = 2 (Britz et al., 2011).

The appropriate boundary conditions in this case are

uð1Þ ¼ 0 ð4Þ

du
dr

jr¼r0
¼ 0 ð5Þ

where ro is the dimensionless inside radius for a hollow enclosure.
Several theoretical studies and numerical methods were used

for the study of the Frank-Kamenetskii equation (Adler, 2011;
Aris, 1975; Britz et al., 2011; Chandrasekhar, 1967; Enig, 1967;
Frank-Kamenetskii, 1955; Hlavacek and Marek, 1968; Hermann
and Saravi, 2016; Steggerda, 1965) which models thermal explo-
sion in an enclosure. The equation also models a non-isothermal
zero order reaction in a catalyst particle. Frank-Kamenetskii
(1955) formulated the problem and obtained analytical solutions
for the case of a slab and cylinder enclosure. The spherical enclo-
sure case can so far only be obtained numerically or approximately
using perturbation methods. Results for the case of sphere can be
found in references (Iacono and De Felice, 2014; Nouh, 2004;
Raga et al., 2013; Roger and Van Gorder, 2013; Soliman and Al-
Zeghayer, 2015, Van Gorder, 2011). The case of spherical annulus
is treated in references (Gill et al., 1979; Hlavacek and Marek,
1968; Wake and Hood, 1993; Hood and Wake, 1996; Soliman,
2019). Numerical methods that can be used to solve Frank-
Kamenetskii equation include finite difference, finite elements, col-
location methods (Alhumaizi and Soliman, 2000; Finlayson, 1980;
Soliman and Alhumaizi, 2008, 2005), and Pade approximants
(Khader, 2013, Soliman, 2013, 2017).

The Frank-Kamenetskii equation can be transformed to initial
value problem known as Lane-Emden equation of the second kind
or isothermal Lane-Emden equation.

Let;

w ¼ u0 � u ð6Þ
and

n2 ¼ kr2z2 ð7Þ
where

u0 ¼ uðr0Þ ð8Þ

z2 ¼ expðu0Þ ð9Þ
Eqs. (3)–(5) become

d2w

dn2
þ s
n
dw
dn

¼ expð�wÞ ð10Þ

wðn0Þ ¼ 0 ð11Þ

dw
dn

jn¼n0
¼ 0 ð12Þ

where n0 is the inner radius of the annulus of the infinite enclosure
such that r0 ¼ n0 / n.

Eqs. (10)–(12) are the initial value problem analogue to the
boundary value problem (3)–(5). Eqs. (10)–(12) are called Lane-
Emden equation of the second kind and in spherical enclosure
occurs in the theory of stellar structure.

Soliman and Al-Zeghayer (2015) obtained an approximate
solution for the Lane-Emden equation in the case of solid sphere.
Soliman (2019) extended this solution to the case of hollow
sphere.

Eq. (2) can also describe the steady state differential heat bal-
ance for catalyst particles in which non-isothermal zero order reac-
tion takes place. Hlavacek and Marek (1968) used the Frank-
Kamenetskii approximation (Eq. (3)) and presented the analytical
solutions for the cases of solid and hollow slab and cylinder and
the numerical solution for the case of sphere (Britz et al., 2011).
Aris (1975) devoted a good part of his book to discuss the Lane-
Emden equation and Frank-Kamenetskii equation and their rela-
tion to each other. Lopes et al. (2009) used perturbation methods
to find approximate solution for zero order reaction in a catalyst
slab with convection and diffusion. This work can of course be
extended to a spherical catalyst particle.

The aim of the present paper is to extend the results of the Lane-
Emden equation to the Frank-Kamenetskii equation and give an
approximate analytical solution for Eqs. (3)–(5).

Firstly, we treat the case of solid sphere giving the approximate
solution of the Lane-Emden equation and the Frank-Kamenetskii
equation. Next some useful relations between system parameters
for large distance parameter are derived and numerical results are
presented.We improve then the approximate solution for the initial
value problem (Eqs (8)–(10)) obtained by Soliman (2019) for the
case of hollow sphere. We present numerical results to show the
accuracy of the equations. The results are extended to the boundary
value problem of Frank-Kamenetskii and numerical results are pre-
sented. The approximate solution of the effectiveness factor for the
model equation is obtained and comparedwith the exact numerical
solution obtained by the solution of the initial value problem.

2. Mathematical development

During mathematical manipulations we will exploit Eqs. (6) and
(7) to relate the variables w, and n of the initial value problem with
the variables u; r and the parameter k of the boundary value prob-
lem. Our main concern is the solution of the boundary value
problem.

First we introduce previous results in case of solid sphere and
then obtain some interesting relations.

2.1. Solid sphere

Soliman and Al-Zeghayer (2015) obtained the following approx-
imate solution for the case of solid sphere (n0 ¼ 0Þ for the Lane-
Emden Eqs. (10)–(12),

w¼ ln 1þn2

2
1� 0:59858

:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þn2=154

q cos

ffiffiffi
7

p

4
lnð1þn2=23:162231Þ

 !0
B@

1
CA

0
B@

1
CA

ð13Þ
This solution can be extended to the Frank-Kamenetskii Eqs.

(3)–(5) using Eqs. (6) and (7) to be,

u0 � u ¼ ln 1þ kz2r2

2
1� 0:59858

:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kz2r2=154

p cos

  

�
ffiffiffi
7

p

4
lnð1þ kz2r2=23:162231Þ

 !!!
ð14Þ

Taking into consideration that z2 is given by Eq. (9) and (14) will
be implicit in u0.

Now, If we let

A ¼ �0:59858
ffiffiffiffiffiffi
154

p
¼ �1:178 ð15Þ

B ¼ p
2
�

ffiffiffi
7

p

4
lnð23:162231Þ ¼ �0:507787 ð16Þ
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Then for large n Eq. (13) can be written as

w ¼ ln
n2

2

 !
u

 !
ð17Þ

where

/ ¼ 1þ Affiffiffi
n

p sin Bþ
ffiffiffi
7

p

2
ln n

 ! !

¼ 1� 1:178ffiffiffi
n

p sin �0:507787þ
ffiffiffi
7

p

2
ln n

 ! !
ð18Þ

By definition (Eqs. (6) and (7)), the value of w at r = 1 is

w ¼ ln
n2

k

 !
¼ u0 ð19Þ

From Eqs. (17) and (19) the condition for k = 2 is u ¼ 1.
u ¼ 1 requires

sin �0:507787þ
ffiffiffi
7

p

2
ln n

 !
¼ 0 ð20Þ

Or

�0:507787þ
ffiffiffi
7

p

2
ln n

 !
¼ np ðn is an integerÞ ð21Þ

Giving

n ¼ exp
2ffiffiffi
7

p ð0:507787þ npÞ
� �

¼ 1:4679ð10:74909Þn ð22Þ

Enig (1967) has shown that for any shape, the following relation
is satisfied at the turning points

dw
df

¼ 2 ð23Þ

where

f ¼ lnðnÞ ð24Þ
The points which satisfy relation (23) require

d
dn

1ffiffiffi
n

p sin �0:507787þ
ffiffiffi
7

p

2
ln n

 !" #
¼ 0 ð25Þ

giving

tan �0:507787þ
ffiffiffi
7

p

2
ln n

 !
¼

ffiffiffi
7

p
ð26Þ

Or

n ¼ expf 2ffiffiffi
7

p ð0:507787þ npþ 1:209429Þg

¼ 3:6623ð10:74909Þn ð27Þ

2.1.1. Important relations for large n (large u0)
In this section we develop relations for the different variables

for large n for the turning points and for k = 2.
From Eqs. (7) and (17) and at r = 1, we have

k ¼ n2

expðwÞ ¼
2

1þ Affiffi
n

p sin Bþ
ffiffi
7

p
2 ln n

� �� �

ffi 2 1� Affiffiffi
n

p sin Bþ
ffiffiffi
7

p

2
ln n

 ! !
ð28Þ

At the turning points, from Eq. (26) we have

sin Bþ
ffiffiffi
7

p

2
ln n

 !
¼ �

ffiffiffi
7
8

r
¼ constant ð29Þ

Now from Eq. (27), we have the following relations for large n
and for subsequent turning points i, i + 1, i = 1, 2,. . .

niþ1

ni
¼ 10:74909 ð30Þ

This means that (ni) forms a geometric sequence with a com-
mon ratio of 10.74909. We also have from Eq. (19) and for k close
to a value of 2,

wiþ1 � wi ¼ u0;iþ1 � u0;i ¼ 2 ln
niþ1

ni
¼ 4:74964 ð31Þ

This means that (u0;i) forms arithmetic sequence with a com-
mon difference of 4.74964.

From Eqs. (28) and (30) we have

kiþ1 � 2
ki � 2

¼ �
ffiffiffiffiffiffiffiffi
ni
niþ1

s
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

10:74909
¼

r
� 0:30501 ð32Þ

This means that (ki � 2) forms a geometric sequence with a
common ratio of -0.30501.

Relation (31) also holds for subsequent points having k = 2.
We also have from Eqs. (6), (7), (17), (18) for very large n the

relation

u0 � u ffi ln
n2

2

 !
¼ ln

kr2 expðu0Þ
2

� �
ð33Þ

From this equation, we obtain for k ¼ 2;

u ffi � ln
kr2

2

� �
ffi � lnðr2Þ ð34Þ

Which is approached for (r) close to 1

2.1.2. Approximate solution for the Frank-Kamenetskii Eqs. (3-5).
Now we discuss how to obtain the solution of Eq. (14)

which is the approximate solution for the Frank-Kamenetskii
Eq. (3-5).

For a given n; we can calculate w from Eq. (13)
Now, at r = 1 we have from Eq. (4);

uð1Þ ¼ 0;

from Eq. (6)

u0 ¼ wþ u ¼ w

and from Eq. (7)

k ¼ n2 expð�wÞ
Then for any r

n2 ¼ kr2 expðu0Þ
For this new n; we can calculate a new w from Eq. (13), then

uðrÞ ¼ u0 � w

Usually, however, we have k: Thus, we need to solve the non-
linear algebraic Eq. (14) at r = 1 to obtain u0. Then we use Eq.
(14) again to get u at any r.
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2.1.2. Numerical results and discussion
We have chosen the DASSL FORTRAN code (Petzold, 1982) to

solve Eqs. (10–12). It uses backward differentiation
formula method to solve a system of differential algebraic
equations.

From the numerical solution we obtained Fig. 1 for a plot of u0

against k. The approximate solution is so accurate that it is indis-
tinguishable with the numerical solution. Similar graphical plots
are obtained by Britz et al., 2011.

Table 1 shows the values of k and u0 for the turning
points. The first row contains the values obtained by Steggerda
[4]. We notice that the last four values do not satisfy relation
(32) and thus they must be in error. The second and third
rows are for k and u0 calculated from the numerical solution
with the last three values predicted from Eqs. (31), (32). We
can notice from the last five values the satisfaction of relations
(31), (32).

Table 2 shows the values of uo for k = 2 calculated from the
numerical solution. Again we notice for the last five values the sat-
isfaction of relation (31)

For five significant figures our value for k (3.32199) for the first
turning point is consistent with others (Britz et al., 2011;
Steggerda, 1965).

2.2. Hollow sphere

In this section we improve on the approximate solution for Eqs.
(8–10) obtained by Soliman (2019).

For this purpose, we define y as

y ¼ n� n0 ð35Þ
and a as

a ¼ n0
n

ð36Þ

a1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
63 � 105

13

r
ð37Þ

a2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
63 � 105

4

r
ð38Þ

The approximate solution is given by

cw1 ¼ ð1� aqÞ ln 1þ y2

2 1� 2
3:
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þz2=154

p cos
ffiffi
7

p
4 lnð1þ u2=a1Þ

� �� �� �
þ

ða� aqÞ ln 1þ y2 1� 2
3:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2z2=154

p cos
ffiffi
7

p
4 lnð1þ u2=a2Þ

� �� �� �
ð39Þ

w2 ¼ 2aq ln coshð yffiffiffi
2

p Þ
� �

ð40Þ

w ¼ w1 þ w2 ð41Þ

z ¼ y
ð1þ a2y2=2Þn1

u ¼ y
ð1þ a2y2=2Þn2 ð42Þ

Using extensive numerical computations, we arrived at the fol-
lowing values for the parameters q, n1, and n2.

q ¼ 1þ 2þ 384ay2=n70
n0ð1þ 3ay2=n70Þ

ð43Þ

n1 ¼ 2:667þ 0:14n0 þ 0:00135n20 ð44Þ

n2 ¼ 4:262ð1� expð�0:025þ 0:09n0 � 0:024n20ÞÞ ð45Þ
To test the accuracy of Eqs. (39–45), Figs. 2–4 are presented as a

plot of w against k for the cases of n0 = 5, 20, and 50. We notice that
for large n0 and w the profile approaches that of a solid sphere with
the infinite oscillations around k ¼ 2:

Fig. 1. u0 against k.

Table 1
k and u0 for the turning points. * means predicted values.

k 3.32199 1.66411 2.10834 1.96657 2.0095 1.99571 2.00023 1.99922
k 3.32199 1.66416 2.10854 1.96746 2.00998 1.99696 2.00093* 1.99972* 2.00009*

uo 1.60746 6.74080 11.3768 16.1614 20.9004 25.6532 30.4004* 35.1507* 39.9001*

Table 2
u0 for k = 2. * means predicted values.

uo 0.45698 4.6665 9.61872 14.311 19.0786 23.8228 28.5724* 33.322* 38.0717*
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In general good agreement of the profiles of the approximate
solution and the numerical solution is observed.

2.2.1. Approximate solution for the Frank-Kamenetskii Eqs. (3–5)
Eqs. (39–45) hold for the case of hollow sphere while replacing

n ¼
ffiffiffi
k

p
r expðu0=2Þ ð46Þ

n0 ¼
ffiffiffi
k

p
r0 expðu0=2Þ ð47Þ

w ¼ u0 � u ð48Þ
Given u0; and r0, and using the substitutions (46–48), Eqs. (39–

45) evaluated at r ¼ 1 become a non-linear equation in k. This non-
linear equation is solved for k for different values of r0 and the
results are plotted in Figs. 5–8.

Figs. 5–8 show a plot of the exact numerical solution and the
approximate solution given by Eqs. (39–45) of u0 against k for a
certain value of r0: The numerical solution is obtained by using
DASSL (Petzold, 1982) for the solution of the Lane-Emden Eqs.
(10–12) for different values of the annulus radius n0 and recording
w as u0 and k as n2e�u0 for n ¼ n0=r0. The accuracy of the approxi-
mate solution is very good especially for r0 ¼ 0:8 (Fig. 5). Some
deviations in small range of k occur in other cases (at the limit
point in Fig. 6 and at the middle of Figs. 7, 8 in Figure). The limit
point in Fig. 6 is over-estimated by about 6% while the maximum
under-estimation of k is 6% in Fig. 7 and 13% in Fig. 8.

Contrary to the case of a solid sphere, the solution has a finite
number of multiplicity. Wake and Hood (1993) showed that there
exist at least two solutions, the multiplicity of solutions is finite
and the number of solutions increases as r0 approaches 0. These
conclusions are confirmed by the present calculations. Hood and
Wake (1996) classified the solution as slab like when it has two
solutions (Figs. 5–7), and as sphere like when it shows oscillations
around k = 2 (Fig. 8) before it goes to infinity as k goes to zero. They
estimated that the difference in behavior occurs at r0 = 0.02969
with slab like behavior for r0 > 0.02969.

2.3. Effectiveness factor for a zero order reaction in a non-isothermal
catalyst particle

2.3.1. Mathematical formulation
In the case of a nonisothermal reaction of zero-order (and also

of order between 0 and 1) the concentration of a reactant within
the catalyst particle can fall to zero at a certain distance off the cen-
tre of the particle.

The temperature reaches a maximum at this point ðr ¼ r0Þ for
an exothermic reaction. Thus we have,

du
dr

jr¼r0
¼ 0

and we will have a situation similar to combustion in a spherical
annulus.

If the reactant has an initial concentration of CA0, there will be a
maximum temperature which could not be exceeded. This temper-

Fig. 2. w against k for n0 = 50.

Fig. 3. w against k for n0 = 20.

Fig. 4. w against k for n0 = 5.
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ature corresponds to the disappearance of the reactant and is given
by

Tmax � T0 ¼ CA0Dð�DHÞ
k

ð49Þ

To relate the present work with the familiar terminology of dif-
fusion and reaction in catalyst particles, we define

Prater Number = dimensionless adiabatic temperature rise=

b ¼ Tmax � T0

T0
¼ CA0Dð�DHÞ

kT0
ð50Þ

Arrhenius Number ¼ dimensionless activation energy ¼ c

¼ E
RgT0

¼ 1
e

ð51Þ

Thiele Modulus ¼ u ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A expð �E

RgT0
Þ

DCA0

s
¼

ffiffiffiffiffiffi
k
bc

s
ð52Þ

We can conclude then that

u0 ¼ bc ð53Þ

k ¼ bcu2 ð54Þ
The effectiveness factor g is given by

g ¼ �3
k
du
dr

				
r¼1

¼ 3
Z 1

r0

r2 expðuÞdr

¼ 3ffiffiffi
k

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
Z 1

r0

r4 expðuÞdu
dr

dr

s
ð55Þ

Fig. 6. u0 against k for the case of a hollow sphere with r0 = 0.2.

Fig. 7. u0 against k for the case of a hollow sphere with r0 = 0.05.

Fig. 8. u0 against k for the case of a hollow sphere with r0 = 0.01.

Fig. 5. u0 against k for the case of a hollow sphere with r0 = 0.8.
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The effectiveness factor of a catalyst particle can also be
expressed in terms of the solution of the Lane-Emden equation as

g ¼ 3
k
½n dw

dn
� ¼ 3

kn

Z n

n0

n2 expð�wÞdn ð56Þ

where

k ¼ n2 expð�wÞ ð57Þ
This means that we can calculate the effectiveness factor

directly from the solution of the Lane-Emden equation. Fig. 9
shows the results of these calculations. The exact numerical solu-
tion is obtained from dw

dn ; while the approximate solution is
obtained from the integral formula with w calculated from the
approximate solution (Eq. (13)). For the main branch which ends
at (2,3) the calculations are for solid sphere with n0 ¼ 0: For the
sub-branches with a given u0, the equation is solved for different
values of n0. The effectiveness factor is the value at w ¼ u0. The
obtained results are found to be in good agreement with the exact
solution. The relative error in the effectiveness factor is less than
10% on the average. The most significant deviations are in the
region of maximum value of g. The deviations are insignificant in
most of the regions.

3. Conclusions

We presented an approximate analytical solution for the
isothermal Lane-Emden Eqs. (39-45) that is valid for all values of
distance parameter n. The solution is extended to the correspond-
ing Frank-Kamenetskii equation modelling a thermal explosion in
a sphere and non-isothermal zero order reaction in a spherical
catalyst particle using Eqs. (46–48). As for the actual solution to

the boundary value problem, we have seen that the approximate
solution is in close agreement with the exact solution. We applied
the results of this paper to the calculations of the effectiveness fac-
tor of a catalyst particle in which non-isothermal zero order reac-
tion takes place.
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