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A R T I C L E  I N F O   
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A B S T R A C T   

In this work, a novel attempt is performed to optimally identify the seven ungiven parameters of the proton 
exchange membrane fuel cells (PEMFCs) steady-state model. A fitness function is adapted to reduce the sum of 
quadratic errors (SQEs) between the experimentally measured voltages and the corresponding computed values. 
A honey badger optimizer (HBO) is utilized to minimize the SQEs, exposed to a group of inequality bounds. Three 
test cases of well-known commercial PEMFCs units as benchmarking are elucidated and discussed over different 
steady-state operating conditions. Substantial comparisons to the other up-to-date optimizers published in the 
art-of-literature are provided to appraise the HBO’s viability. It’s worth highlighting that the values of maximum 
percentage biased voltage deviations for Ballard Mark, SR-12 and 250 W stacks are equal to 2.696%, − 0.016% 
and 1.595%, respectively. Besides, several statistical measures are applied to indicate the proposed HBO 
robustness and accurateness. Furthermore, a sensitivity study based on SOBOL indicators is performed at which 
the influence of small deviations of the seven extracted parameters on the PEMFC’s model, is comprehensively 
illustrated. It can be confirmed that the HBO asserts its capability to tackle this task effectively rather than others.   

1. Introduction 

At the present time, fuel cells (FCs) have been regarded as the new 
trend of the renewable-based energy conversion technology due to their 
robustness, higher efficiencies, and environmental friendship. Thus, FCs 
have penetrated the markets upon wide range of applications (station
ary, portable, and transportation) for either residential, commercial, or 
industrial sectors. Based on the electrolyte material, FCs are classified 
into several types. Each type exhibits distinctive characteristics in terms 
of the operating temperatures, the power range, the electrical effi
ciencies, and the suitable applications [1,2]. Examples of such types are 
alkaline FCs [3], proton exchange membrane FCs [4], phosphoric acid 
FCs [5], solid oxide FCs [6], and many more. 

Amongst the various FCs’ types, proton exchange membrane FCs 

(PEMFCs) have impressively attracted the interests of the manufacturers 
and the customers as a result of their advantageous features. Despite 
PEMFCs’ merits, their competitive spread into the commercial market 
suffers from their catalyst expensive cost [1,2,7]. Moreover, the 
PEMFC’s output voltage is unregulated, caused by the operating losses, 
such that it decreases non-linearly with increasing the load. Particularly, 
the PEMFC’s voltage starts with high decay due to the activation losses, 
then it diminishes linearly due to the ohmic losses, again it rapidly de
creases at higher loads due to the concentration losses [8–10]. 

Consequently, the PEMFC modelling is a heavy nonlinear task which 
requires precise techniques to properly evaluate the PEMFC perfor
mance, and accurately simulate the electrical features of the PEMFC 
stacks [11]. Hence, several researchers have introduced many models to 
deal with the PEMFC operation aspects. Generally, the PEMFC models 
can be classified into; mechanistic [12], empirical [13], and semi- 
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empirical models [14]. For more details about the various modeling 
categories, the reader can refer to [15–19]. 

Such models have their own mathematical formulations consisting of 
some unspecified parameters that aren’t illustrated in the manufac
turer’s datasheets and need to be fully defined to construct a robust and 
effective model [20]. Therefore, numerous attempts have been carried 
out to properly identify the unknown parameters of the PEMFC models. 
Example of such attempts are electrochemical impedance spectroscopy- 
based techniques [21,22], black box-based approaches [23], adaptive 
filter-based [24] and current switching methods [25] and many more. 
Nevertheless, these techniques aren’t widely adopted to obtain the un
known parameters of PEMFC as they aren’t flexible and practicable [4]. 

Herein, a semi-empirical electrochemical model introduced by Mann 
et al [26], has been developed to simulate the electrical performance of 
PEMFC under steady state operation. Over the last two decades, Mann’s 
model has attained wide approval for its capability of foreseeing the 
polarization characteristics of PEMFC under various operating condi
tions. However, in addition to the nonlinearity issue, the unknown pa
rameters of Mann’s model are strongly coupled and vary extremely with 
the load conditions. Accordingly, constructing the model using the 
aforesaid conventional methods has become more sophisticated and 
time-wasting [4]. 

Recently, due to the significant development of the artificial 
intelligent-based methods, a respected number of researchers have 
implemented the metaheuristic optimizers (MHOs) for extracting the 
undefined parameters of the PEMFC model. Referring to the PEMFC 
parameter estimation as an optimization problem, MHOs are the most 
reliable and effective tool to be applied [4,7,11]. 

Among such optimizers, that have been employed, are grasshopper 
optimizer (GO) [27], grey wolf optimizer (GWO) [28], shark smell 
optimizer (SSO) [29], whale optimizer (WO) [30] and bonobo optimizer 
(BO) [31]. Besides, chaotic Harris hawk optimizer (CHHO) [32], coyote 
optimizer (CO) [33], manta rays foraging optimizer (MRFO) [34], black 
widow optimizer (BWO) [35], jellyfish search optimizer (JSO) [36] and 
pathfinder optimizer (PFO) [37] have been applied for the same issue. 
Additively, the authors in [37–40] have utilized tree-seed algorithm 
(TSA) and sine tree-seed algorithm (STSA), gradient-based optimizer 

(GBO), improved artificial ecosystem optimizer (IAEO), and neural 
network optimizer (NNO), respectively, for the same purpose. At same 
context, the researchers have used slime mould optimizer (SMO) [41], 
tree-growth optimizer (TGO) [42], marine predator optimizer (MPO) 
and political optimizer (PO) [43], and flower pollination optimizer 
(FPO) [44] and many more [45–48]. 

It’s clear from the above literature review that identifying the PEMFC 
unceratin parameters is a hot research point, where all the afore opti
mizers compete to get lower errors and lesser computational effort, 
smooth and fast convergence pattern, and better statistical indices. The 
above-mentioned competition is based on the no free-lunch theory that 
states there is no ultimate algorithm can solve all engineering optimi
zation problems perfectly [45]. The aforesaid has motivated the authors 
to examine the performance of a novel swarm-based MHO, called honey 
badger optimizer (HBO) developed in 2022 [49] for pinpointing the 
uncertain parameters of three well-known PEMFCs stack test cases. It’s 
noteworthy that the HBO has noticeable merits such as better transition 
between exploration and exploitation to evade getting trapped into local 
minima, fast convergence trend and lesser computational time. It’s 
worth indicating that as far the authors’ knowledge after an accurate 
search, this is the first application of HBO in the PEMFC’s parameter 
estimation problem. 

It’s worth highlighting that the main contributions of this paper 
include: (i) executing and testing the performance of HBO to generate 
the optimal values of Mann’s model unknowns, (ii) three typical test 
cases called Ballard Mark V, AVISTA SR-12, and 250 W stacks are deeply 
studied and (iii) various statistical comparisons to other recent 
competitive optimizers are done. 

This article is structured as follows: Section 1 gives a brief literature 
review and the inspiration of the current effort. Section 2 discusses the 
mathematical formulation of well-matured Mann’s model. The proposed 
objective function (OF) and the corresponding constraints are illustrated 
in Section 3. The procedures of HBO are indicated in Section 4. Section 5 
reveals set of numerical simulations of the PEMFC model under various 
steady-state scenarios, beside performing various statistical tests to 
examine the HBO performance. Finally, the conclusion and the future 
insights are announced in Section 6. 

Nomenclatures 

Vc Output voltage of a single PEMFC (V) 
E Nernest open-circuit voltage (V) 
Vact Activation voltage decline (V) 
VΩ Ohmic voltage drop (V) 
Vcon Concentration voltage drop (V) 
Vs Output voltage of PEMFC stack (V) 
N Number of series PEMFCs 
Tc Cell operating temperature (K) 
PH2 , and PO2 Partial pressures of H2 and O2 (atm), respectively 
Ic Cell operating current in (A) 
Am membrane effective area (cm2) 
RDa , and RDc Relative dampness of the water vapor at the anode and 

cathode; respectively 
Pa, and Pc Inlet pressures of anode and cathode (atm) 
PH2O Saturation pressure of the water vapor (atm) 
εi(i = 1 : 4) Semi-empirical coefficients (V,VK− 1,VK− 1,VK− 1) 
CO2 Concentration of O2 at the catalytic layer (mol/cm3) 
Rm Membrane resistance (Ω) 
Re External connections resistance (Ω) 
l Membrane thickness (cm) 
ρm Membrane specific resistivity (Ω.cm) 
γ Unitless parameter that indicates the dehydration status 
β Parametric factor (V) 

JM Maximum current density (A/cm2) 
Vmeas Experimentally measured voltages 
Vcalc Model-based calculated voltages 
Npop Population size 
X(i) Position of the ith honey badger in the related population 
m, and mi(i = 1 : 7) Stochastic numbers from 0 to 1 
lli, and hli Lower and higher limits of the search space 
I(i) Smell intensity of the honey badger 
Cp Concentration of the prey 
ri Distance between the ith honey badger and the prey 
X(p) Prey position 
ϑ Density parameter 
it, and itmax Current iteration and maximum number of iterations 
C Constant ≥ 1 
F Flag 
X(new) Updated badgers’ positions 
σ Foraging capability of the honey badger 
fi, and fp Fitness of the corresponding ith agent and the prey best 

positions; respectively 
V%BD Percentage biased voltage deviation 
Si 1st order indicators 
SOi Overall order indicators 
K number of measured dataset points  
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2. Mathematical model of PEMFC 

As earlier-stated, Mann’s model has been considered as the most 
robust approach to represent the relation between the PEMFC output 
voltage and the drawn current in the steady state conditions. In addition, 
this model can also be extended further to transient conditions as well. 
The coming few statements briefly demonstrate this Mann’s model as 
widely used in the literature. The overall output voltage of an individual 
PEMFC Vc in (V), can be expressed by (1) [26]. 

Vc = E − Vact − VΩ − Vcon (1)  

Typically, the cell output voltage varies from 0.9 to 1.23 V based on the 
heating level and regulating pressures. So, to obtain higher voltage 
values, N cells have to be serially connected forming a PEMFCs stack Vs, 
as given by (2) [30,36]. 

Vs = N.Vc (2)  

However, equation (2) assumes that all cells act identically without any 
deviations. 

Firstly, E can be determined by (3) for Tc ≤ 100◦∁ [30–38]. 

E = 1.229 − 8.5 × 10− 4(Tc − 298.15)+ 4.3085 × 10− 5 × Tc
[
ln
(
PH2

̅̅̅̅̅̅̅̅
PO2

√ )]

(3)  

PH2 and PO2 are the partial pressures of H2 and pure O2 in (atm), which 
can be described by (4) and (5), respectively [36]. 

PH2 = 0.5.RDa .PH2O.

⎡

⎢
⎢
⎣

⎡

⎢
⎢
⎣

1
RDa .PH2 O

Pa
.exp

(
1.635Ic

Am .Tc
1.334

)

⎤

⎥
⎥
⎦ − 1

⎤

⎥
⎥
⎦ (4)  

PO2 = RDc .PH2O.

⎡

⎢
⎢
⎣

⎡

⎢
⎢
⎣

1
RDc .PH2O

Pc
.exp

(
4.192Ic

Am .Tc
1.334

)

⎤

⎥
⎥
⎦ − 1

⎤

⎥
⎥
⎦ (5)  

PH2O symbolizes the saturation pressure of the water vapor in (atm), 
which can be given by (6) [27,36]. 

log10(PH2O) = 2.95.10− 2(Tc − 273.15) − 9.18.10− 5(Tc − 273.15)2 

+ 1.44.10− 7(Tc − 273.15)3
− 2.18 (6)  

Secondly, Vact can be calculated by (7) [4,7]. 

Vact = − [ε1 + ε2.Tc + ε3.Tc.ln(CO2 ) + ε4.Tc.ln(Ic)] (7)  

where, εi(i = 1 : 4) are semi-empirical coefficients in (V, VK− 1, VK− 1,

Cp

m
2m

3m

I
I/4

I/9

Honey 
badger

(a)

Prey Honey badger

(b)

Fig. 1. Honey badger concepts: (a) Inverse square law and (b) The cardioid movement of the honey badger.  

Set the parameters: itmax, Npop, C

Initialize random population

Evaluate each agent position by the OF and pass it to 
fi, i Npop]

Save the best position X(p) and pass its fitness to fp

For it=1:itmax

Update the density factor using (19)

For i=1:Npop

Determine the intensity Ii using (16)

If m 0.5

Update the position X(new) using (21)Update the position X(new) using (22)

Evaluate new position and assign to fnew

If fnew fi

Set X(i) = X(new) and fi = fnew

If fnew fp

Set X(p) = X(new) and fp = fnew

Yes

No

Yes

No

No

If i = Npop 

If it = itmax

Yes

No

Generate the best unknown parameters

Yes

No

Fig. 2. The HBO flowchart.  
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VK− 1). CO2 represents the O2 concentration at the catalytic layer in 
(mol/cm3), which can be referred in (8) [27,36]. 

CO2 =
PO2

5.08.106.exp(
498
Tc

) (8)  

Thirdly, VΩ can be obtained from (9) [29–33]. 

VΩ = Ic(Rm +Re);Rm = ρm

(
l

Am

)

(9)  

ρm points out the membrane specific resistivity in (Ω.cm), expressed in 

(10) [34–38]. 

ρM =

181.6

[

1 + 0.03
(

Ic
Am

)

+ 0.062
(

Tc
303

)2(
Ic
Am

)2.5
]

[

γ − 0.634 − 3
(

Ic
Am

)]

.exp
(

4.18
(

Tc − 303
Tc

)) (10)  

It’s worth emphasizing that γ represents the membrane water content 
and its assessment is a challenging matter due to its variation during the 
cell operation. In this work, it may be asserted that a convenient water 
content, at all probable operating scenarios, is assumed constant. 

Table 1 
Datasheets of the study cases and the typical boundaries of the unknown parameters.  

Stack type Technical specifications Practical boundaries 

Mark V FC SR-12 250 W Parameter minimum maximum 

N 35 48 24 ε1(V) − 1.19997 − 0.85320 
l(μm) 178 25 127 ε2.10− 3(V/K) 0.8 6.0 
Am(cm2) 50.6 62.5 27.0 ε3.10− 5(V/K) 3.6 9.8 
Jm(A/cm2) 1.500 0.672 0.860 ε4.10− 5(V/K) − 26.00 − 9.54 
Tc(K) 343 323 343 γ 13 23 
PH2 (atm) 1.50000 1.47628 1.00000 Re(mΩ) 0.1 0.8 
PO2 (atm) 1.00000 0.20950 1.00000 β(V) 0.0136 0.5000  

Table 2 
HBO results compared to other challenging optimizers for Ballard Mark V.  

Optimizer 
Parameters 

HBO TSO ESMO PFO 
[37] 

STSA 
[37] 

TSA 
[37] 

GO 
[27] 

NNO 
[40] 

WO 
[30] 

ε1(V) ¡1.19970 − 0.85520 − 0.85320 − 1.19967 − 0.85320 − 1.19970 − 0.85320 − 0.97997 − 1.19780 
ε2.10− 3(V/K) 4.33453 2.72227 2.54055 3.95786 2.55805 3.56765 3.41730 3.69460 4.41830 
ε3.10− 5(V/K) 9.20688 4.86143 3.60422 6.39011 3.60438 3.60000 9.80000 9.08710 9.72140 
ε4.10− 5(V/K) ¡16.28304 − 16.28305 − 16.28244 − 16.28300 − 16.28280 − 16.28300 − 15.95550 − 16.28200 − 16.27300 
γ 23.00000 23.00000 23.00000 23.00000 23.00000 23.00000 22.84580 23.00000 23.00000 
Re(mΩ) 0.10000 0.10000 0.10000 0.10000 0.10000 0.10000 0.10000 0.10000 1.00200 
β(V) 0.01360 0.01360 0.01360 0.01360 0.01360 0.01360 0.01360 0.01360 0.01360 
SQE(V2) 0.853608 0.853608 0.853608 0.853610 0.853610 0.853610 0.871000 0.853610 0.853700 
itmax 300 300 300 200 3000 2000 100 100 200 
Npop 30 30 30 30 30 30 60 50 50  

Table 3 
HBO results compared to other challenging optimizers for AVISTA SR-12.  

Optimizer 
Parameter 

HBO TSO ESMO SMO 
[29] 

BWO 
[35] 

BO 
[31] 

TGO 
[42] 

CHHO 
[32] 

MPO 
[43] 

FPO 
[44] 

ε1(V) ¡0.87299 − 0.85320 − 1.17627 − 0.97360 − 1.09310 − 1.09729 − 1.11240 − 0.85320 − 1.02836 − 1.05090 
ε2.10− 3(V/K) 2.30398 2.24255 4.12997 2.00000 1.20000 3.80925 3.85466 3.09184 3.89805 3.40000 
ε3.10− 5(V/K) 3.60019 3.60000 9.33731 9.47770 7.70000 9.80000 4.36986 8.23877 9.79999 6.58800 
ε4.10− 5(V/K) ¡10.6351 − 10.6370 − 10.6364 − 24.7220 − 13.0000 − 9.5400 − 9.6448 − 9.5400 − 9.5400 − 10.6220 
γ 21.09021 13.00000 19.28074 17.33990 16.29970 23.00000 23.00000 22.91156 23.00000 12.79620* 
Re(mΩ) 0.26702 0.10000 0.23983 0.30000 0.01440 0.67231 0.21887 0.62468 0.67231 0.19101 
β(V) 0.14998 0.14864 0.149853 0.32150 0.50380* 0.17532 0.18307 0.17624 0.17532 0.22560 
SQE(V2) 0.000142 0.000310 0.000144 0.29595 0.03840 1.05663 1.104085 1.05716 1.05663 0.001881 
itmax 300 300 300 1000 1000 200 500 500 3000 500 
Npop 30 30 30 NM 50 30 20 30 NM NM 

*The reported γ violates the stated limits (See Table 1). So, unfeasible solution. “NM” refers to “not mentioned”. 

Table 4 
HBO results compared to other challenging optimizers for 250 W stack.  

Optimizer 
Parameter 

HBO TSO ESMO JSO 
[36] 

GBO 
[38] 

IAEO 
[39] 

BO 
[31] 

CHHO 
[32] 

CO 
[33] 

ε1(V) ¡0.85320 − 0.85391 − 0.97123 − 0.96089 − 1.16647 − 0.99910 − 1.19969 − 0.91010 − 1.18542 
ε2.10− 3(V/K) 2.25892 2.25410 2.81252 3.21947 3.22560 2.82500 3.01886 2.96614 3.00508 
ε3.10− 5(V/K) 3.60777 3.60000 5.10588 8.11000 3.80178 4.47000 3.60000 7.78813 9.80000 
ε4.10− 5(V/K) ¡17.38902 − 16.11273 − 17.37440 − 17.48900 − 17.48890 − 17.00000 − 15.5870 − 15.23891 − 12.06106 
γ 14.43913 13.00000 14.411522 19.93580 19.03580 19.93580 23.00000 22.23630 23.00000 
Re(mΩ) 0.10000 0.10000 0.10000 0.10000 0.10000 0.10000 0.10000 0.19321 0.10000 
β(V) 0.01379 0.01360 0.01376 0.01453 0.01453 0.01450 0.05455 0.05367 0.06256 
SQE(V2) 0.331371 0.394386 0.331376 0.335980 0.335980 0.336000 0.642013 0.674730 0.613910 
itmax 300 300 300 300 500 3000 200 500 1000 
Npop 30 30 30 30 50 50 30 30 100  
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Finally, Vcon can be appraised by (11) [29–38]. 

Vcon = − βln
(

1 −
Ic

Am.JM

)

(11)  

According to the above-mentioned equations, it’s obvious that there are 
seven undefined parameters (ε1,ε2,ε3,ε4,γ,Reandβ) which are not existed 
in the fabricators’ datasheets. These parameters will be optimized using 
the proposed HBO to attain a precise PEMFC steady-state modelling 
under different operating circumstances. 

3. Problem formulation 

For the sake of estimating the seven ungiven variables of PEMFC, the 
sum of quadratic errors (SQEs) between the experimentally recorded 
voltages Vmeas and the computed voltages Vcalc using the afore model is 
employed. The SQE that is described in (12), is broadly utilized in the 
literatures [10,27,29–38,46–48]. Seeking for fair comparison to the 
other published optimizers, the OF is adopted to minimize the SQE, as 
revealed in (13). 

SQE =
∑K

j=1

(
Vmeas,j − Vcalc,j

)2 (12)  

OF = Minimize(SQE) (13)  

Moreover, the SQE is subjected to set of inequality constraints (ICs), as 
indicated in (14). 

ICs =

⎧
⎪⎪⎨

⎪⎪⎩

εn,min ≤ εn ≤ εn,max∀n ∈ 1 : 4
γ,min ≤ γn ≤ γmax

Re,min ≤ Re ≤ Re,max
βmin ≤ β ≤ βmax

(14)  

It’s known that the searching through the lower and higher limits of the 
previous ICs are preserved by HBO (self-constrained without any addi
tional burdens to the OF). The ultimate target is to attain significant 
fitting between the experimental/recorded output voltages and the 
corresponding estimated ones by the HBO-based outcomes. 

4. Procedures of the HBO 

HBO is a swarm-based MHO introduced by Hashim et al. [49]. 
Principally, HBO is inspired by the intelligent attitudes of honey badger 
when searching for food (bee honey). For targeting the prey places, the 
honey badger utilizes one of two techniques. The first one is to depend 
on its smell sense to approximately locate the food source then start 
digging to catch the prey. While the other one is to follow the honey
guide bird guides to directly detect the beehive. Regarding more details 
about the inspiration and motivation of HBO, the reader is invited to 
browse [49–51]. 

Specifically, HBO is divided into two stages; the digging stage and 
the honey stage which represent the exploration and exploitation phases 
of the proposed optimizer. To mathematically formulate HBO, the first 
step is to initialize the population size Npop which refers to the honey 
badgers with their corresponding positions, as indicated in (15). 

X(i) = lli +m1 × (hli − lli) (15)  

The second step is to define the smell intensity of the honey badger I(i)

Fig. 3. Trend of SQE convergences for the study cases.  
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towards the prey. According to Inverse Square Law, the intensity is a 
function of the prey concentration and the distance between the prey 
and the honey badger. Consequently, the higher I(i) is, the faster 
movement will be and vice versa, as depicted in (16)-(18) and revealed 
in Fig. 1(a). 

I(i) = m2 ×
Cp

4πr2
i

(16)  

Cp = (X(i) − X(i + 1) )2 (17)  

ri = (X(p) − X(i) ) (18)  

The third step is to update the density parameter ϑ which controls the 
haphazardness rate to guarantee smooth transformation from explora
tion to exploitation phases. Furthermore, ϑ updates its value relying on 
the current iteration it and the maximum number of iterations itmax, as 
given in (19). 

ϑ = C × e(
− it

itmax) (19)  

To avoid getting stuck into local optima, the suggested optimizer em
ploys a flag F which changes the search direction for obtaining high 
chances for agents to accurately cover the search area. F is mathemati
cally formulated by (20). 

F =

{
− 1, ifm3 ≤ 0.5

1, else (20)  

Eventually, it’s time to update the badgers’ positions X(new). As earlier- 
mentioned, the update process is achieved through the digging and 
honey activities. Particularly, in the digging stage, the agent motion 

imitates a heart shape, as shown in Fig. 1(b) and described by (21). 

X(new)=X(p)+F×σ×I×X(p)+F×m4×ϑ×ri|cos(2πm5)×[1− cos(2πm6)]|

(21)  

Generally, during the digging activity, the agent position extremely 
depends on I, r and ϑ. However, the badger may receive any flag F which 
guides it to explore even better food sources. 

On the other hand, the honey phase is implemented when the badger 
follows the bird to locate a beehive which can be simulated by (22). 

X(new) = X(p)+F × m7 × ϑ × ri (22)  

Mainly, during the honey activity, the badger exploits the bird guides to 
implement a search near to the prey position discovered by the bird. 
Besides, the search process is affected by density factor ϑ, while the 
badger may be notified by a flag F. It’s self-explanatory that only C, σ, 
Npop and itmax have to be set by the user leading to lesser computational 
effort and random trials to fine-control the performance of HBO. The 
reader can easily track the general steps of the proposed HBO in the 
flowchart revealed in Fig. 2. 

5. Study cases, simulations, and optimizer validations 

Herein, three commercial PEMFCs, widely utilized in the literatures, 
are employed to prove the robustness and effectiveness of the supposed 
HBO-based methodology under steady-state operation. For ensuring 
unprejudiced comparisons to other competitive optimizers, the param
eters’ boundaries, commonly mentioned in the state-of-art, have been 
unified for all study cases. It’s worth saying that the numerical simula
tions are executed via MATLAB version R2018b on a laptop device with 

Fig. 4. Plots of I-V curves.  
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Intel Core i7 CPU, and 8 GB RAM (OS: Windows 10 Enterprise). 
Furthermore, the values of the HBO tunning parameters are Npop =

30, itmax = 300, C = 6 and σ = 2. Besides, the optimized values of the 
unidentified parameters are captured after running HBO 50 independent 
executions because of the high haphazardness concept of such ap
proaches. Also, set of statistical tests are implemented to affirm the 
viability and the precision of the proposed HBO-methodology. 

5.1. Study cases’ technical specifications and the unknown parameters’ 
limits 

For uncomplicated referencing, the fabricators’ datasheets of the 
previously-stated study cases are obtained from 
[27,28,36,37,38,42–44], which are shown in Table 1. In all cases, the 
relative dampness of water vapor at anode and cathode (RDa and RDc ) are 
kept equal to 1.00. The lower and upper limits of the unknown param
eters are gathered from [27,34,36,37,39,40,43,52], and revealed in 
Table 1 (last three columns). 

Fig. 5. Plots of the activation, ohmic and concentration losses, total losses, and Nernst voltage.  

Fig. 6. Polarization curves of AVISTA SR-12 under various operating conditions.  
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5.2. Parameters’ estimations of the PEMFC study cases 

In this subsection, HBO along with two new algorithms, called TSO 
[53] and ESMO [54], are applied to optimally generate the unknown 
parameters of the PEMFC model. The results of lowest SQE values of 
total 50 independent executions for Ballard Mark V, SR-12 and 250 W 
stacks, compared to the other two implemented optimizers and the 
recently-published works, are summarized in Tables 2–4, respectively. 
Moreover, the reader can browse the aforementioned Tables for the 
values of the optimized parameters, beside the iterations and pop
ulations numbers of each optimizer. The convergence patterns for the 
three cases under study via the executed optimizers are illustrated in 
Fig. 3(a)–(c). 

It can be observed that HBO have superior convergence features 
rather than TSO and ESMO in terms of fast, smooth, and steady progress 
to the final optimal SQE value during 300 iterations. Fig. 4(a)–(c) 
illustrate the I-V curves of the experimental datasets along with the 
computed ones using the suggested HBO-based model, beside TSO and 
EMSO, for Mark V FC, SR-12 and 250 W stacks, respectively. Referring to 
Fig. 4(a)–(c), it may be noted that the simulated I-V curves, which are 
the output of the model after receiving the optimized values of the pa
rameters, are compatible and well matching to the corresponding 
measured values. What’s more, the insignificant SQE values assert the 
above-stated well agreeing claim (See Tables 2–4). 

As formerly-stated, the polarization characteristics are affected by 
three losses: activation, ohmic, and concentration, where their domi
nance varies during the loading conditions [27,38]. In order to fully 
grasp such variations, Fig. 5(a)–(c) depict the variations of the 
previously-indicated losses with the load current along with the open- 
circuit voltage for Mark V, SR-12 and 250 W stacks, respectively. 

Closer look to Fig. 5(a)–(c), it may be obvious that the activation losses 
are dominant at startup, then a linear relationship is exhibited due to the 
ohmic losses, lastly, the activation losses dominate at higher loads. 

5.3. Simulations under diverse steady-state circumstances 

At this part, various operating conditions are submitted to evaluate 
the steady-state performance of PEMFC. Particularly, this section dis
cusses the impact of varying the operating temperature Tc and the fuel 
and oxidant pressures PH2/PO2 on the polarization characteristics of the 
PEMFC stacks. To avert lengthy paper, two of the three study cases are 
demonstrated for the above-stated aim. Specifically, after obtaining the 
optimum values of the unknown parameters by HBO (See Tables 2–4), 
the I-V curves of the SR-12 modular and the 250 W stack are generated 
under varying Tc with constant PH2/PO2 and vice versa. The I-V curves of 
the SR-12 and the 250 W stacks at 50, 70 and 80 ◦C, respectively, under 
constant PH2/PO2 , as mentioned in their datasheets, are depicted in Fig. 6 
(a) and Fig. 7(a), respectively. Additionally, the polarization curves of 
the above-mentioned study cases at (1/1.5 bar), (1.5/3.5 bar) and (2.5/ 
5 bar), respectively, under constant Tc, as stated in their technical 
specifications, are pursued in Fig. 6(b) and Fig. 7(b), respectively. 

According to Fig. 6(a) and Fig. 7(a), the reader can clearly notice that 
the polarization features are enhanced by increasing the operating 
temperature Tc at constant supply pressures PH2/PO2 . Furthermore, 
regarding Fig. 6(b) and Fig. 7(b), it can be realized that the output 
voltage can be improved by raising the supply pressures PH2/PO2 at 
constant cell temperature Tc. 

Fig. 7. Polarization curves of 250 W stack under various operating conditions.  

Table 5 
Statistical metrics of HBO and others.  

Type Optimizer Parameters Elapsed Time (s) 

Best Mean Worst StD.10− 3 

Ballard Mark V HBO  0.853608  0.989870  1.542909  274.83600  15.69 
TSO  0.853608  1.747287  2.281877  301.18200  14.55 
ESMO  0.853608  0.861271  0.982512  22.68297  16.37  

AVISTA SR-12 HBO  0.000142  0.004465  0.036763  9.54149  22.81 
TSO  0.000310  0.098664  0.314069  50.92980  21.88 
ESMO  0.000144  0.012106  0.052198  12.71980  23.27  

250 W Stack HBO  0.331371  0.332919  0.345910  2.87497  16.79 
TSO  0.394386  1.316534  3.273921  964.59800  16.59 
ESMO  0.331376  0.333445  0.341634  2.54025  17.93  
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5.4. Statistical, sensitivity and performance validations 

To appraise the robustness, effectiveness, and accurateness of HBO, 
set of parametric statistical metrics are performed such as the best, the 
mean, the worst, and the standard deviation (StD) of the adopted SQE 
after 50 independent runs. These statistical indices of HBO along with 
the executed optimizers for the three PEMFCs’ study cases are encap
sulated in Table 5. As known, the task of PEMFC parameters’ identifi
cation is off-line process which means that reporting the simulation time 
is insignificant. Nevertheless, the elapsed time is stated in Table 5 (The 
last column). 

Correspondingly, the percentage biased voltage deviation V%BD has 
been employed to signify the reliability and precision of HBO in fitting 
the calculated output voltages with the measured ones. The variation of 
V%BD, which can be formulated by (23) [36], along with the corre
sponding load current values for the three earlier-stated study cases are 
depicted in Fig. 8(a)–(c), respectively. It may be useful mentioning that 
the maximum values of V%BD for Ballard Mark, SR-12 and 250 W stacks 

are 2.696%, − 0.016% and 1.595%, respectively. 

V%BD =
Vmeas − Vcalc

Vmeas
× 100 (23)  

Over and above that, the global sensitivity study (GSS) is carried out to 
investigate the effect of changing the values of the PEMFC optimized 
parameters on the calculated SQE. Mainly, GSS is an effectual technique 
for estimating the variation impacts of certain parameters on their 
model performance. Actually, GSS is a function of Sobol sensitivity in
dicators Si (1st order indicators) and SOi (overall order indicators) which 
are determined by Monte Carlo simulations and imitated using easyGSS 
toolbox [55–57]. Particularly, Si denote the effect of varying every 
single parameter on SQE, while SOi show the overall effect of that 
parameter considering its interactive relations with the other parame
ters. Thus, the divergence between Si and SOi elucidates how strong the 
interactions among the model parameters are. Accordingly, in case of no 
interactions among the model parameters, Si and SOi are identical. 
Moreover, the higher Si is, the more vital the parameter is [55,56]. In 

Fig. 8. Plots of percentage voltage deviations.  

Table 6 
Sobol sensitivity indicators for the PEMFC extracted parameters.  

Parameter Ballard Mark FC AVISTA SR-12 250 W stack 

Si SOi Si SOi Si SOi 

ε1  0.04388  0.70601  0.17086  0.88146  0.17299  0.84357 
ε2  0.17836  0.86899  0.07811  0.74525  0.09521  0.77351 
ε3  − 0.01383  0.14653  0.00848  0.06912  0.02216  0.05935 
ε4  − 0.01388  0.02386  0.01695  0.01592  − 0.00504  0.03111 
γ  − 0.01424  0.00768  0.00645  6.27690 × 10− 5  0.00636  0.00863 
Re  − 0.01577  1.02300 × 10− 5  0.00719  5.91620 × 10− 5  0.00705  2.57640 × 10− 6 

β  − 0.01565  1.21270 × 10− 4  0.01331  0.02495  0.00763  4.89870 × 10− 4  
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this study, the variation range is picked as ±10% of the optimized values 
of the PEMFC parameters and the number of samples employed by Sobol 
GSS is 5× 103. Table 6 summarizes the values of Sobol sensitivity in
dicators when changing each optimized parameter for the three study 
cases. 

Generally, the reader can conclude that the PEMFC output voltage 
significantly depends on three parameters, called ε1, ε2 and ε3 due to the 
corresponding high Si and SOi. On the contrary side, the output voltage 
sensitivity is moderate for ε4 and γ, while modest sensitivity appears for 
Re and β. Consequently, as formerly-demonstrated, the PEMFC model is 
a heavy nonlinear one, where any small variations of the extracted 
optimal parameters affect the model performance and especially for the 
afore-stated three parameters. The aforementioned appraises the HBO- 
based technique in generating the best values of the undefined param
eters. 

In addition to that, computational time complexity of the employed 
HBO is performed. In which, the HBO principally includes some stages 
as indicated in Fig. 2: initialization, evaluation of fitness, exploration 
and exploitation phases. In the considered formulas, Npop denotes the 
population size, Dim defines the dimension of the problem/decision 
variables, and itmax is the total number of iterations. In this context, the 
computational complexity can be summarized as follows: The problem 
definition enforces O(1) time, the initialization stage needs O

(
Npop

)

time, the evaluation of fitness step needs O
(
Npop

)
time, the updating 

process requires O(itmax) time, and the updating of locations of badgers’ 
require O(itmax × Dim) time. Hence, the whole time complexity of HBO 
acquires Big-O as illustrated before. By omitting the constants and co
efficients the final concluded Big-O of the HBO is specified in (24). 

O(HBO) = O
(
Npop.itmax.Dim

)
(24)  

6. Conclusions 

An efficient tool based on HBO has been presented for extracting the 
ungiven parameters of the well-known PEMFC’s model, namely Mann’s 
model. Three test typical cases have been thoroughly demonstrated via 
numerical simulations in terms of the computed polarization charac
teristics and the losses’ variations with the varied load current. Addi
tionally, different steady-state conditions have been demonstrated and 
discussed under varied operating scenarios. The final best values of SQEs 
for Ballard Mark V FC, AVISTA SR-12 and 250 W stacks are 0.853608, 
0.000142 and 0.331371 V2, respectively. Statistically, HBO has 
exhibited a soft, fast, and stable convergence trend as evidenced by the 
patterns of plots. Moreover, the HBO has been tested under various 
statistical parametric indices to signify its robustness and effectiveness. 
Lastly, a sensitivity study based on SOBOL indicators has been imple
mented to see how dependent is the PEMFC’s model on the optimized 
parameters. In addition to that, the computational complexity of the 
HBO has been carried out. Our future target is to test the performance of 
HBO in evaluating the transient/dynamic operation of various PEMFC 
stacks considering the impact of varying the suppliants’ flow rates on the 
polarization features. 
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