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A B S T R A C T   

Recently, world endeavors are focused on promoting energy savings by operating both sources and loads at their 
maximum efficiency points. Thus, this paper presents a novel attempt to optimally determine the operating 
parameters of an isolated system comprising the proton exchange membrane fuel cells (PEMFCs) stack serving a 
variable load. A fitness function is adapted to maximize the PEMFCs stack’s efficiency using tuna swarm algo-
rithm (TSA), subjected to set of inequality constraints. A well-known commercial type of PEMFCs stack namely 
Nedstack PS6 6 kW, is carefully studied over two TSA-based optimization scenarios. The first scenario aims at 
optimizing five operating parameters, while only two operating parameters are optimized in the second one. 
Numerical comparisons among the two scenarios are made. It’s worth indicating that the maximum absolute 
efficiency deviation between both scenarios is equal to 0.8064 at 100 ◦C. Moreover, statistical tests are executed 
to appraise the performance of the TSA and others. At later stage, the TSA-based results are employed to train 
and learn an adaptive neuro-fuzzy controller for extracting the optimal operating parameters over wider range of 
loading conditions, while keeping the goal of maximum efficiency point in order. This allows predicting the 
optimal values of the operating parameters according to a certain load with a very low time burden, making it 
able to simulate the real-time load variations effectively and accurately. It can be reported here at low loading 
values as actual results for example, at 30 % loading condition, the stack’s efficiency is improved from 16.27 % to 
63.47 % at 60 ◦C, from 17.24 % to 64.24 % at 80 ◦C and from 18.22 % to 65.26 % at 100 ◦C. While, at load power 
of 40 %, the FC’s efficiency is enhanced from 21.65 % to 62.72 % at 60 ◦C, from 22.95 % to 63.60 % at 80 ◦C and 
from 24.25 % to 64.76 % at 100 ◦C. It may be established that via this proposed synergy between TSA and neuro- 
fuzzy controller, the efficiency of PEMFCs can be maximized.   

1. Introduction 

Recently, fossil fuels have shown ecologically destructive impacts, 
such as global warming, and acidic rains, due to their poisonous emis-
sions, principally CO2. Besides, such fuels are existed in a limited 
amount which threatens energy sustainability as the energy demands 
are rapidly increasing. Consequently, the main challenge the world faces 
is to replace such conventional running out sources with renewable 

energy sources (RESs) [1,2]. 
Particularly, fuel cells (FCs) are one of the RESs, which utilize 

hydrogen, which is the most plentiful element universally, to generate 
electricity by performing electrochemical reactions. FCs’ systems are 
distinguished by higher efficiencies and energy densities, static nature, 
and almost no environmental issues. Moreover, FCs are convenient for 
portable, traction, and stationary applications either for domestic, 
commercial, or industrial sectors [3,4]. Additionally, the absence of the 
combustion and mechanical processes gives the superiority of FC 

Abbreviations: RESs, Renewable energy Sources; FCs, Fuel Cells; PEMFCs, Proton Exchange Membrane Fuel Cells; EVs, Electric Vehicles; BC, Boost Converter; AI, 
Artificial Intelligence; GWO, Grey Wolf Optimizer; PSO, Particle Swarm Optimizer; RMSE, Root Mean Square Error; MHAs, Metaheuristic Algorithms; TSA, Tuna 
Swarm Algorithm; OPs, Operating Parameters; ANFIS, Adaptive Neuro-Fuzzy Inference System; CF, Cost function; ILs, Inequality Limits; AHO, Artificial Hum-
mingbird Optimizer; ANN, Artificial Neural Network; CFAFR, Constant Fuel and Air Flow Rate. 
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efficiency, compared to heat combustion engines. Differently from bat-
teries, FCs are not storage devices such that the electricity production is 
conditioned to the continuity of the fuel (hydrogen) [5]. 

FCs are classified into diverse types according to the electrolyte 
substance [3–5]. The most commercial types are (a) alkaline FCs [6], (b) 
molten carbonate FCs [7], (c) phosphoric acid FCs [8], (d) proton ex-
change membrane FCs (PEMFCs) [4], (e) solid oxide FCs [9], and many 
more [1]. Each is characterized by specific operation features such as 
operating temperature, range of output power, electrical efficiency, and 
suitable applications [10]. 

Specifically, PEMFCs surpass the other types in penetrating the 
commercial markets, especially in transportation applications. Their 
prevalence in electric vehicles (EVs) scope is own to their amazing 
characteristics such as: low operating temperatures, and pressures, low 
startup time, rapid reaction for load deviations, high-power density, 
compact size, and no safety concerns [1–5,11]. However, there are still 
further improvements in PEMFCs technology to reduce their expensive 
cost concentrated on the catalyst material [1]. Furthermore, the output 
voltage per single cell has a range of 0.8 to 1.22 V, so the voltage, and 
power are upgraded by serially connecting PEMFCs [12]. Over and 
above, this terminal voltage is unregulated and nonlinearly decays with 
increasing the load caused by the polarization losses (activation, ohmic, 
and concentration) [13]. For that reason, a DC/DC boost converter (BC) 
is required to step up the voltage to an appropriate value, needed by the 
load, and stabilize this value upon loading variations [12,14]. 

To properly employ FCs in EVs’ systems, several factors shall be 
deemed, like FC performance, modularity, durability, reliability, cost, 
and fuel sustainability. As a result of the complexity, and the high-cost of 
such applications, precise modeling is mandatory before starting the 
design process and manufacturing prototypes [5,11]. By modeling and 
simulating FC systems, the analysis of the system attitudes and the 
assessment of the system performance under various operating condi-
tions can be studied accurately and effectively. Additionally, varying the 
operation parameters for obtaining maximum efficiency and energy- 
saving can be determined without going through expensive experi-
mental setups [15,16]. 

Accordingly, many researchers have developed mathematical 
models for the purpose of investigating the above-mentioned aspects of 
PEMFCs. Amphlett et al [17] have introduced a semi-empirical static 
model that simulates the polarization characteristics of PEMFCs with a 

good fitness between the calculated V-I datasets and the measured 
datasets. Nevertheless, it requires very specific input parameters, such as 
membrane thickness, which aren’t commonly found in the manufac-
turer’s datasheets. Moreover, the authors [18] have designed a dynamic 
model that is consisting of a set of resistances and capacitances in series 
and parallel connections. This sophisticated model gives precise results, 
but experimental data for real PEMFCs is needed to compute its pa-
rameters. On the other hand, a simplified dynamic model in which all 
the parasitic capacitors are gathered in one capacitor is represented 
[19]. It composes of a single capacitance parallel with two resistances to 
emulate the activation, and concentration losses. Furthermore, the effect 
of load variation on the V-I curves and the hydrogen consumption is 
investigated in the model proposed by [20]. For more examples of 
PEMFC’s models, the readers are invited to visit [21–26]. 

As earlier-stated, such models include some undefined parameters 
which aren’t specified in the PEMFC’s datasheets. The model robustness 
and effectiveness depend on how accurate the estimation of these pa-
rameters is [5,11]. Consequently, many researchers have attempted to 
identify them by utilizing different ways such as electrochemical 
impedance spectroscopy methods [27,28], black box-based techniques 
[29,30], adaptive filter-dependent methods [31–33], and current 
switching-based approaches [34]. Nonetheless, they aren’t commonly 
applied in estimating the unknown parameters of PEMFC’s models, as 
they lack flexibility and practicability [4]. 

Among the various illustrated models, the one derived by Motapon et 
al [35] has acquired a good reputation for describing the transient 
response of PEMFCs and the impact of the load changing on the fuel 
consumption and the polarization curves. Also, this simple model has 
mathematically covered the thermodynamic phenomenon and the effect 
of charging the double layer. Thus, it has shown a significant potency in 
imitating the PEMFCs operating characteristics, especially those that are 
used in EVs’ applications. 

Like other models, Motapon’s model suffers from the nonlinearity 
exhibited by the PEMFC’s activation and ohmic losses, besides the model 
parameters’ dependency on the operating conditions. Hence, deter-
mining such parameters using the aforesaid traditional methods has 
become more complicated and time-consuming. Therefore, the artificial 
intelligence (AI)-based techniques have replaced the conventional ones 
due to their simple construction, accurate and effective results, and low 
execution time [2–4,8,15,16]. Thence, a significant number of 

Nomenclatures 

Vs Output voltage of PEMFC stack (V) 
Kv Voltage constant at rated conditions 
Eth Thermodynamic balance voltage (V) 
Nc Number of series connected cells per stack 
St Tafel slope (V) 
ifc FC operating current (A) 
ie Exchange current (A) 
τd Response time (s) 
RΩ Overall resistance (Ω) 
Tfc Stack temperature (K) 
PH2 , and PO2 Partial pressures of H2 and O2 (atm), respectively 
x%, and y% Percentages of H2 and O2 in the fuel and air, 

respectively 
Pf , and Pa Absolute supply pressures of the fuel and air (atm), 

respectively 
FUH2 , and FUO2 Utilization factors of H2 and O2, respectively 
Qf , and Qa Fuel and air flow rates (l/m), respectively 
F 96,485 Asec/mol 
R 8.314 J/(molK)
σ Number of moving electrons (σ = 2) 

Ps Stack output power (W) 
ηth, ηv, and ηf Thermodynamic, voltage and fuel efficiencies, 

respectively 
ΔG Change in Gibbs free energy (J) 
ΔHHHV Enthalpy change at higher heating value (J) 
Vout Converter output voltage (V) 
Vin Converter input voltage (V) 
DC Converter duty cycle 
Np Population size 
Xi ith initial agent 
ul, and ll Upper and lower limits of the search space 
it Iteration counter 
itm Maximum number of iterations 
Xit

b Best agent location 
β1, and β2 Weight factors 
c Constant 
p Probability factor 
Fb Best fitness value 
ri(i = 1 : 2) Stochastic/random numbers from 0 to 1 
r3 Stochastic/random number from − 1 to 1  
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researchers have applied Metaheuristic-based approaches (MHAs) for 
calculating the unknown parameters of the PEMFC models, as reported 
in [36–40]. When defining the parameter estimation task as an opti-
mization problem, MHAs are the most robust and potent tool to be 
implemented. Referring to the no free-lunch theorem [41], all the MHAs 
compete to reach the global optimum solution with fast and steady 
convergence trends and low computational burdens without falling into 
local minima. 

It’s worth indicating that recent attempts are carried out for opti-
mizing the PEMFC efficiency [42–46]. For example, a model predictive 
control technique is suggested in [47] to enhance the temperature and 
voltage management of PEMFC by tunning the mass flow rate of the 
supply fuel and cooling water. A parametric analysis, based on the en-
gineering equation solver, is presented in [48] to study the effects of 
augmenting the current density on the PEMFC’s overall efficiency. A 
multi-objective MHA is presented in [49] to improve the PEMFC’s 
output power and efficiency and minimize the ecological effects and 
cost. The authors in [50] have investigated how the power density and 
the efficiency are affected by increasing the pores per inch of nickel 
metal foam. However, most of the previous-reported short survey lack 
assessing the influence of load changing on the PEMFC’s efficiency and 
how to preserve maximum efficiency during such load variations. 

Therefore, the authors are motivated to employ a novel swarm-based 
MHA, called tuna swarm algorithm (TSA), for optimizing energy-saving 
by maximizing overall efficiency of the PEMFCs stack. Herein, Mota-
pon’s model is chosen to properly simulate the PEMFC due to its earlier- 
mentioned merits. Essentially, TSA is adopted to optimally extract the 
values of the operating parameters (OPs) for a well-known commercial 
PEMFCs unit, called Nedstack PS6 6 kW, upon various loading scenarios. 
OPs refer to those parameters that are adjusted during the PEMFCs 
operation to obtain the targeted output for a certain application. It’s 
worth stating that the TSA exhibits a smooth and fast convergence rate 
and effective balancing between exploration and exploitation phases. 

Generally, the main contributions of the article are shortlisted as 
follows: i) Operating the PEMFCs stack at its maximum efficiency points 
regardless of the load variations via tuning set of physical parameters, ii) 
Deciding on the dominant parameters affecting stack efficiency to 
develop an adaptive and robust controller, iii) Applying a recent MHA, 
so-called TSA, to track the maximum efficiency points under various 
loading scenarios, and iv) The Adaptive Neuro-Fuzzy Inference System 
(ANFIS) is used to construct an adaptive controller to have maximum 
PEMFC efficiency regardless of loading conditions to suit of real time 
application. 

The rest of the paper’s text is arranged as follows: Section 2 illus-
trates the supposed system components along with their modelling 
formulations. The adapted cost function (CF) and the corresponding 
bounds are described in Section 3. Section 4 indicates the inspiration 
and the main steps of TSA. Section 5 presents a set of numerical simu-
lations and results for various optimization scenarios and strategies, 

besides applying some statistical measures to test the TSA performance. 
Finally, Section 6 announces the conclusion and the sights to extend this 
current effort. 

2. System identification and modelling 

The proposed system comprises a variable resistive load supplied by 
PEMFCs stack via BC. At each output power level, the OPs including fuel 
and air flow rates, fuel and air pressures, and stack temperature, are 
optimized to track the maximum efficiency point of the stack. Various 
scenarios related to OPs are introduced by excluding some of them from 
the optimization process and then, measuring the corresponding 
maximum efficiency deviations. The overall system, whose block dia-
gram is depicted in Fig. 1, is simulated and made ready using MATLAB/ 
SIMULINK environment. 

2.1. PEMFC’s mathematical model 

As earlier-reported, Motapon’s [35] model is applied here to 
dynamically describe the PEMFC’s voltage deviations while changing 
the load current. This model includes a constant resistance, which 
represent the ohmic losses, series with a controlled voltage source. Here, 
the PEMFC’s output voltage is supposed to be affected by the activation 
losses due to the initial slowness of the chemical reactions, and the 
ohmic losses due to the electrodes and electrolyte resistivities. Accord-
ingly, the stack voltage can be described by (1) [12]. 

Vs = Kv.Eth − Nc.St.ln
(

ifc

ie

)

.
(sτd

3
+ 1

)− 1
− ifc.RΩ (1) 

where, Kv is the voltage constant at rated conditions, Nc denotes the 
number of the stack series cells, St is the Tafel slope (V), ifc is the FC 
operating current (A), ie is the exchange current (A), the response time 
(s) and the overall resistance (Ω) are represented by τd and RΩ, respec-
tively. The open-circuit voltage due to thermodynamic balance (V) is 
denoted by Eth and given by (2) for operating temperature ≤ 100 ◦C [5]. 

Eth = 1.229 − 8.5 × 10− 4( Tfc − 298.15
)
+ 4.3085 × 10− 5

× Tfc
[
ln
(
PH2

̅̅̅̅̅̅̅̅
PO2

√ )]
(2) 

where, Tfc is the stack temperature (K). The partial pressures of H2 

and O2 (atm) are symbolized by PH2 and PO2 , which are determined using 
(3) and (4), respectively [5]. 

PH2 = [1 − FUH2 ].x%.Pf (3)  

PO2 = [1 − FUO2 ].y%.Pa (4) 

where, x% and y% represent the percentages of H2 and O2 in the fuel 
and air, respectively. The absolute supply pressures of the fuel and air 
(atm) are denoted by Pf and Pa, respectively. The utilization factors of H2 

and O2 are indicated by FUH2 and FUO2 , which are calculated by (5) and 

Fig. 1. Schematic diagram of the autonomous studied system.  
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(6), respectively [14]. 

FUH2 =
6 × 104.R.Tfc.ifc

σ.F.Pf .Qf .x%
(5)  

FUO2 =
6 × 104.R.Tfc.ifc

2σ.F.Pa.Qa.y%
(6) 

where, the fuel and air flow rates (l/m) are symbolized by Qf and Qa, 
respectively. F and R are equal to 96,485 A.s/mol and 8.314 J/(mol.K), 
respectively. The number of moving electrons is denoted by σ (σ = 2). 

The stack output power Ps (W) can be determined by (7) [12]. 

Ps = Vs × ifc (7) 

Finally, the PEMFC overall stack efficiency ηs is described by (8) 
[14]. 

ηs = ηth × ηv × ηf (8) 

where, ηth, ηv and ηf are the thermodynamic, voltage and fuel effi-
ciencies, which are formulated in (9), (10) and (11), respectively [14]. 

ηth = ΔG/ΔHHHV (9)  

ηv = Vs/Eth (10)  

ηf = ifc/(Nc.F.FUH2 ) (11) 

where, ΔG and ΔHHHV are the change in Gibbs free energy (J) and the 
enthalpy change at higher heating value (J), respectively. 

It’s obvious that (8) doesn’t consider the power consumed by the 
balance-of-plant devices, like compressors, that serve the PEMFC oper-
ation. Thus, the real efficiency is less than the computed one due to the 
power dissipated by such auxiliaries. Once again, the OPs which can be 
optimized for obtaining maximum ηs are Qf , Qa, Pf , Pa and Tfc. 

As illustrated before, Nedstack PS6 6 kW PEMFCs stack, whose 
technical specifications are publicized in Table 1 (first two columns) 
[12], is utilized to energize an adjustable resistive load. 

2.2. Boost converter model 

As the nominal output voltage of the stack is 42–45 V, a DC/DC BC is 
employed to magnify this voltage to a suitable desired value (100 V) for 
supplying the load. The duty cycle (DC) is updated using feedback 
control circuit, comprising a PI controller, to ensure a constant BC 
output voltage of 100 V, whatever the loading values. For downsizing 
the inductors and capacitors which results in cost reduction, the 
switching frequency is picked in a high value (20 kHz). It’s worth 
mentioning that the inductor and capacitor values are equal to 0.5 mH 
and 7500 μ F, respectively. These settings are neatly chosen to guarantee 
low ripple output voltage at the stated switching frequency. The ratio of 
the output to the input voltages of BC is computed by (12) [12,14]. 

Vout

Vin
=

1
1 − DC

(12)  

3. Problem identification 

As earlier announced, this work targets to have optimal OPs’ values 
of PEMFCs from energy-saving point of view under diverse loading 
circumstances by TSA-based method. Hence, the CF of TSA is adopted to 
maximize the PEMFCs stack efficiency (ηs), as given by (13). 

CF = Minimize(100 − ηs) (13) 

Additionally, the proposed CF is susceptible to set of inequality limits 
(ILs), as depicted in (14). Also, the ILs’ values, which are obtained based 
on the PEMFC’s datasheet and presented in [12,14], are revealed in 
Table 1 (last three columns). 

ILs =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Qf ,min ≤ Qf ≤ Qf ,max
Qa,min ≤ Qa ≤ Qa,max
Pf ,min ≤ Pf ≤ Pf ,max

Pa,min ≤ Pa ≤ Pa,max
Tfc,min ≤ Tfc ≤ Tfc,max

(14) 

Needless to say, the searching space through the minimum and 
maximum boundaries of the afore ILs are kept by TSA (self-restrained 
with no extra burdens to CF). 

It’s worth revealing that The PEMFCs stack is the critical element in 
the proposed isolated system, as it’s the only supply for the loads (no 
storage devices are included like batteries or supercapacitors). Thus, the 
main target of this research is to maximize the overall efficiency of the 
PEMFCs. Accordingly, the efficiency studied in this paper is the effi-
ciency of the PEMFCs’ stack including three sub-terms; thermal, voltage 
and fuel efficiencies, as depicted in equations (8) to (11). The efficiency 
of the DC/DC converter are not considered because the design and 
specification of converter can be changed according to the load 
requirements. 

4. Overview of TSA procedures 

TSA is a swarm-based MHA developed by Xie, et al in 2021. Princi-
pally, TSA mimics the intelligence behavior of tunas during their 
foraging process. While searching for and attacking the preys, they 
employ-two hunting tactics. Spiral hunting is the first tactic at which 
tunas force their victims to swim into shallow water for lower attacking 
effort by swimming in a spiral motion. The second tactic is parabolic 
hunting where each tuna moves after the preceding one, creating a 
parabolic frame to surround its victim [51]. 

Mathematically, like the majority of swarm-based MHAs, TSA starts 
by randomly and uniformly initializing the population (Np) in the search 
space according to (15). 

Xi = r1.(ul − ll)+ ll, i ∈ Np (15) 

where, Xi represents the ith initial agent, ul and ll denote the upper 
and lower limits of the search space and r1 is a haphazard number, 
uniformly generated between 0 and 1. 

When the preys sense a near coming threat, they form an intensive 
school and continuously alter their swimming direction making it is 
difficult for tuna to enclose them. Thence, the tunas start to form a strict 
spiral shape to prosecute the preys, which is described by (16) (for 
r1 ≥ it/itm). 

Xit+1
i =

{
β1.

(
Xit

b + α.
⃒
⃒Xit

b − Xit
i

⃒
⃒
)
+ β2.Xit

i , i = 1
β1.

(
Xit

b + α.
⃒
⃒Xit

b − Xit
i

⃒
⃒
)
+ β2.X

it
i− 1, i = 2, 3,⋯,Np

(16)  

β1 = c+(1 − c).(it/itm) (17)  

β2 = (1 − c) − (1 − c).(it/itm) (18)  

α = er2 l.cos(2πr2) (19)  

l = exp[3cos
( ( (

itm + it− 1) − 1
)
π
)]

(20) 

Table 1 
Nedstack PS6 PEMFC datasheet and the OPs’ boundaries.  

Stack type Technical specifications Practical boundaries 

Nedstack PS6 OP Min Max 

Nc 65 Qf (l/m) 1 84.5 
RΩ(Ω) 0.07833 Qa(l/m) 250 500 
ie(A) 0.29197 Pf (bar) 1.5 3 
x%/y% 99.95/21 Pa(bar) 1 3 
τd(sec) 1 Tfc(K) 333 373  
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where, it is the iteration counter, Xit+1
i symbolizes the position of ith 

agent at it +1 iteration, the best agent location is represented by Xit
b , and 

β1 and β2 are weight factors that tune the agents’ trend to get the po-
sitions of the best agent and the previous agent, respectively. c is a 
constant indicating to what extent the tunas track the best and previous 
agents in the initial stage. The maximum number of iterations is sym-
bolized by itm. r2 is a uniform haphazard number between 0 and 1. 

Particularly, the exploitation phase is achieved when all tunas 
perform the spiral foraging around the prey. Nevertheless, if the best 
agent fails to detect the prey, the group foraging won’t take place as the 
agents impulsively follows the best agent. Consequently, a stochastic 
vector is generated in the search area (Xit

r ) to direct the spiral process 
leading to a wider search space for each agent, which improve the 
exploration capability of TSA, as described by (21) (for r1 < it/itm). 

Xit+1
i =

{
β1.

(
Xit

b + α.
⃒
⃒Xit

r − Xit
i

⃒
⃒
)
+ β2.Xit

i , i = 1
β1.

(
Xit

b + α.
⃒
⃒Xit

r − Xit
i

⃒
⃒
)
+ β2.X

it
i− 1, i = 2, 3,⋯,Np

(21) 

Moreover, tunas also utilize the parabolic foraging in which they 
establish a parabolic shape with respect to the prey position. Besides, 
tunas can detect the victim by hunting around themselves. These two 
mechanisms are executed at the same time supposing that the choice 
likelihood is equal for both. The mathematical formulation of the two 
mechanisms is given by (22). 

Xit+1
i =

{
Xit

b + r1.
(
Xit

b − Xit
i

)
+ r3.m2.

(
Xit

b − Xit
i

)
, r1 < 0.5

r3.m2.Xit
i , r1 ≥ 0.5

(22)  

m = [1 − (it/itm)]
(it/itm) (23) 

where, r3 is a stochastic number between − 1 and 1. 
Generally speaking, after the initialization process, each agent 

haphazardly decides whether to pick one of the two hunting tactics to 
implement or to reproduce its position in the search space relying on the 
probability (p). Furthermore, all the agents are constantly updated and 
determined till the stop condition is reached, then the best agent (Xb) 
and the corresponding fitness value (Fb) are extracted. It’s worth 
mentioning that only Np, itm, c, and p are to be fine-tuned by the user 

resulting in lesser computational burden and lower number of inde-
pendent trials to better TSA ‘s performance. The overall steps of the 
proposed TSA are summarized in the flowchart illustrated in Fig. 2 [51]. 

The TSA is used to crop the optimal values of fuel cell OPs to ensure 
maximum efficiency of PEMFCs regardless of the range of load values. 
Two different scenarios are studied, the first scenario controls five pa-
rameters (Qf , Qa, Pf , Pa and Tfc). Then the second one, controls only two 
parameters (Qf and Qa) according to a certain Tfc. The results of TSA are 
employed to train and test an ANFIS to optimally predict the values of 
PEMFCs’ OPs to attain the maximum stack efficiency for any percentage 
of loading. 

5. Numerical simulations, and discussions 

5.1. TSA-based optimization scenarios 

Ten cases are studied by loading the PEMFCs unit from 10 % to 100 
% of its full load power with fixed step (10 %). It’s worth noticing that 
after many trials, the decided values of the TSA tuning parameters are 
itm = 300,Np = 10, c = 0.7 and p = 0.05. Moreover, the computer 
simulations are implemented via MATLAB/SIMULINK software on a 
laptop device with Intel Core i7 CPU, and 8 GB RAM (OS: Windows 10 
Enterprise). The optimization process is subdivided into two scenarios, 
the first one optimizes all OPs, while the second one optimizes only two 
of the OPs, as illustrated in the following subsections. Finally, statistical 
analyses are carried out to appraise the robustness and effectiveness of 
TSA-based methodology. 

5.1.1. Scenario (1): Five parameters 
Herein, the five OPs are optimally generated, within the previous- 

stated boundaries, for maximizing the PEMFC’s efficiency under the 
proposed loading values. For appraising the TSA performance, two well- 
matured MHAs, called grey wolf optimizer (GWO) and particle swarm 
optimizer (PSO) are assigned to tackle the same problem. In addition, a 
new MHA, called artificial hummingbird optimizer (AHO) [52], is 
engaged for the same previous purpose. Table 2 summarizes the TSA- 
based results (bolded rows) along with the AHO, GWO, and PSO-based 

Fig. 2. The TSA’s flowchart.  
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ones. Fig. 3(a)-(d) elucidate the convergence trends for four certain test 
cases via the implemented optimizers. It can be noted that The TSA has 
better CF (efficiency) than the other competitors overall 300 iterations. 

For more simplicity besides minimizing the PEMFCs’ auxiliaries, the 
succeeding subsection explains the impact of optimizing only Qf and Qa 
on the stack efficiency at certain constant Tfc. 

5.1.2. Scenario (2): Two parameters 
In this scenario, only Qf and Qa are optimized for attaining maximum 

ηs under various Tfc values, considering the same limits depicted in 
Table 1. On the other side, Pf and Pa are kept at their nominal values 
(Pf = 1.5bar and Pa = 1bar). The reader can browse Table 3 to inves-
tigate the optimal values of Qf and Qa along with the corresponding 
optimized ηs for each Tfc value. 

A closer look in Table 3, it can be recognized that ηs values are 
slightly lower than those of Table 2 under same conditions, for almost all 
loading values. For example, at Tfc = 373K, the reader can peruse the 
absolute deviations between the 5 optimized OPs-based ηs and the 2 
OPs-based ηs along with the loading percentages, as announced in 
Table 4. The results indicate that the maximum deviation between the 5 
optimized OPs-based efficiencies and those of 2 optimized OPs-based is 
0.8064, which is an insignificant value. 

5.1.3. Statistical analyses 
At this moment, some statistical metrices are employed to assure the 

robustness, and viability of the applied TSA versus AHO, GWO, and PSO, 
as summarized in Table 5. It’s worth stating that all these statistical 
indices (min, max, mean, StD, median and variance) are determined 
after executing all optimizers 20 independent runs. Also, to avoid paper 
lengthy, as representative cases, only 40 % and 100 % loadings in sce-
nario (1) are revealed in Table 5. 

Again, it’s worth declaring that the ultimate target of this research is 
to operate the PEMFCs stack at its maximum efficiency points regardless 
of the load variations via tuning set of physical parameters. Accordingly, 
it’s clear from the results that TSA has superior statistical performance 
rather than AHO, GWO, and PSO in terms of max, mean, and elapsed 
time values. On the other side, GWO has better values of min, StD, and 
variance. 

According to Table 5 (last column), the single-run computational 

time for all algorithms is extremely high. This is unlogic and unappli-
cable for online applications where the controller shall have a very fast 
response to the practical load variations. Besides, such very heavy time 
burden represents the main reason for implementing only ten loading 
values (10 % to 100 % with 10 % step). However, to construct a robust 
and effective autonomous system, the controller shall have the ability to 
operate the PEMFCs’ stack tracking the maximum efficiency point at any 
loading value (not restricted only to the ten test cases). 

As a result, the authors have biased to construct an ANFIS-based 
controller as an adaptive controller to optimally predict the fuel and 
air flowrates targeting maximum stack efficiency irrespective to the load 
power. Specifically, the neuro-fuzzy controller is firstly trained by the 
data extracted from the TSA-based outcomes in scenario (2). The de-
pendency of this controller on the TSA outcomes stems from the supe-
riority of TSA in maximizing the stack efficiency rather than the other 
competitors. The extracted data is classified as input data (loading (%) 
and Tfc) and output data (Qf and Qa). Secondly, the controller is tested to 
ensure that the output data is properly linked to the input one. Now, the 
controller is ready to foresee the Qf and Qa values at any load power with 
a very low time burden attaining the stack maximum efficiency. The 
following subsection thoroughly illustrates the construction of the pro-
posed controller, besides the obtained results. 

5.2. ANFIS-based optimization approach 

Basically, ANFIS is a hybrid system that integrates both artificial 
neural networks (ANN) and fuzzy inference systems (FIS) [53]. ANFIS 
popularity stems from its MATLAB-based simulation using Fuzzy Logic 
Toolbox with a premium graphical user interface. By applying ANFIS 
approach, the parameters of the membership functions and model rules 
can be customized according to the types and features of the system 
data. Also, implementing ANFIS strategy to link input data to output 
ones, optimally simplifies the updating process of the membership 
functions’ parameters due to input variations. For more details about 
ANFIS, the reader is invited to browse [53–55]. 

Here, the concept of ANFIS is employed to extract the optimal values 
of the PEMFC fuel and air flow rates while attaining maximum PEMFC 
efficiency under different loading conditions and operating tempera-
tures. The training datasets of the neuro-fuzzy controller are extracted 

Table 2 
TSA’s results compared to AHO for scenario (1).  

OPs MHAs Loading (%) 

10 20 30 40 50 60 70 80 90 100 

Qf (l/m) AHO 4.5188 8.9377 13.9632 18.6407 22.9360 28.2240 33.5807 37.5354 43.4519 48.5587 
GWO 4.6104 6.7933 13.8560 10.2967 23.5161 21.4057 20.1907 29.0192 36.0038 24.4631 
PSO 3.1460 5.4997 8.7330 18.5679 16.5125 19.9486 21.6052 30.7019 37.2738 30.8376 
TSA 4.6084 9.2556 13.9748 16.8339 23.5582 28.3216 33.1985 38.1175 43.1079 24.0567 

Qa(l/m) AHO 438.8371 286.0088 359.3748 390.4502 353.8819 365.2811 310.4570 340.6998 488.2393 480.1582 
GWO 297.2217 373.2708 358.3679 277.6508 420.8220 500.0000 384.2643 409.9397 499.0751 314.8431 
PSO 372.0437 429.5991 347.6619 424.1461 392.5718 381.1715 370.7724 407.0021 343.6060 448.1507 
TSA 278.7180 493.6435 252.8986 500.0000 500.0000 392.6029 401.4302 471.6679 500.0000 500.0000 

Pf (bar) AHO 1.8072 2.1867 1.7041 1.8254 2.8595 1.8003 2.4867 2.6095 2.4211 2.0118 
GWO 1.5000 2.0442 1.5125 2.7216 1.5000 1.9905 2.4763 1.9728 1.8028 2.9546 
PSO 2.1419 2.3270 2.3632 1.5048 2.0739 2.0331 2.2893 1.8059 1.6860 2.3455 
TSA 1.5610 2.9282 2.9972 1.6647 3.0000 2.0012 2.1651 3.0000 2.5913 3.0000 

Pa(bar) AHO 1.5014 2.9409 2.9388 2.3983 1.8613 2.9337 1.4995 2.9961 2.2242 2.9572 
GWO 1.2335 1.0000 1.1190 2.8292 1.3786 1.1115 1.3675 2.5722 1.9611 2.9723 
PSO 2.0582 1.8954 1.9436 1.8122 2.6428 1.6782 2.4197 1.3261 1.9764 2.4966 
TSA 2.2684 1.9020 1.0182 3.0000 1.0002 2.2781 2.9776 3.0000 3.0000 2.7901 

Tfc(K) AHO 363.6651 358.2874 371.1818 369.7282 359.4711 369.4107 372.9919 362.7609 371.9588 372.9282 
GWO 373 373 373 373 373 373 373 373 373 373 
PSO 361.9326 337.8781 366.0341 369.2276 359.1280 348.4525 367.4539 351.1457 353.2808 373 
TSA 373 373 373 373 373 373 373 373 373 373 

ηs(%) AHO 65.8858 65.5379 65.2343 64.9638 64.1617 64.0251 63.5736 63.0390 63.0799 62.8825 
GWO 65.9182 65.6545 65.2584 65.0689 64.6179 64.1941 63.8223 63.7041 63.2106 63.0717 
PSO 65.9730 64.8559 65.1646 64.9183 64.2988 63.3073 63.8748 62.2183 62.1424 63.3403 
TSA 66.2767 65.9989 65.5587 65.3932 64.8242 64.7060 64.3953 63.9199 63.7053 63.4480  
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Fig. 3. Convergences trend for certain study cases.  

Table 3 
TSA’s results for scenario (2).  

Tfc(K) OPs Loading (%) 

10 20 30 40 50 60 70 80 90 100 

333 Qf (l/m)  4.2025  8.4862  12.8450  17.2808  21.8216  26.4193  31.2844  36.4332  41.7570  47.5934 
Qa(l/m)  250.000  250.292  250.021  263.540  250.000  359.450  325.923  500.000  500.000  500.000 
ηs(%)  64.8836  64.2559  63.5521  63.1166  62.4786  61.9267  61.0124  59.5763  58.7692  56.9908 

343 Qf (l/m)  4.3045  8.6839  13.1300  17.6663  22.2808  26.9150  31.7430  36.7159  41.9376  47.7895 
Qa(l/m)  326.129  499.353  496.446  260.632  250.011  500.000  363.387  355.570  500.000  400.523 
ηs(%)  65.2442  64.6862  64.1734  63.5745  63.0284  62.6103  61.9367  61.1974  59.9751  58.7710 

353 Qf (l/m)  4.4068  8.8931  13.4405  18.0604  22.7644  27.4787  32.3225  37.2753  42.3825  47.7125 
Qa(l/m)  500.000  250.000  322.053  316.691  265.128  500.000  500.000  481.291  460.180  477.412 
ηs(%)  65.5920  65.0064  64.5184  64.0191  63.4871  63.1150  62.5911  62.0089  61.3800  60.2968 

363 Qf (l/m)  4.5123  9.0982  13.7432  18.4627  23.2335  28.0853  33.0023  38.0450  43.1300  48.4536 
Qa(l/m)  363.222  250.000  446.974  349.237  474.722  478.411  484.256  402.187  499.822  432.420 
ηs(%)  65.8732  65.3410  64.8850  64.3968  63.9143  63.5014  63.0224  62.5017  62.0243  61.3457 

373 Qf (l/m)  4.6092  9.2611  13.9743  18.7483  23.5869  28.4491  33.4094  38.4467  43.5524  48.7582 
Qa(l/m)  289.962  376.866  266.565  329.312  345.668  499.993  500.000  471.280  499.995  500.000 
ηs(%)  66.2630  65.9595  65.5699  65.1645  64.7458  64.4160  63.9943  63.3162  63.0859  62.6416  
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from scenario (2) (See Table 3). Particularly, the input data to the 
controllers are the loading power and the operating temperature, while 
the output ones are the fuel and air flow rates. An ANFIS is constructed 
for each flow rate. The two controllers have the same characteristics in 
terms of a hidden layer with 11 neurons, as shown in Fig. 4. The trian-
gular membership functions are utilized for the input data and the linear 
ones are applied for the output data. A hybrid optimization technique is 
picked to minimize the error goal between the desired data and the 
outputs of ANFIS. The convergence between the training data and ANFIS 
output for air and fuel flow rates is illustrated in Fig. 5(a)-(b). It may be 
noted that the two datasets are very close together. It’s worth 
announcing that the root mean square error (RMSE) between the 
training data and ANFIS output is 0.04228 lpm for fuel flow rate and 
0.37867 lpm for air flow rate. 

To examine the effectiveness and accurateness of the proposed 
ANFIS-based system, the FC’s performance, at different loading condi-
tions, is compared with the constant fuel and air flow rates (CFAFR) 
method where the fuel and air flow rates are kept constant at their 
nominal values of 50.06 (l/m) and 300 (l/m), respectively. Three 
operating scenarios are elucidated at different temperatures of 60 ◦C, 
80 ◦C, and 100 ◦C, as depicted in Fig. 6(a)-(d). The loading resistance is 
varied with time to change PEMFCs stack output power, as shown in 
Fig. 6(a). It may be noticed from Fig. 6(b) that the FC’s efficiency with 

the proposed ANFIS controller is higher than the corresponding one of 
the CFAFR method. At load power of 1801 W (30 %), the FC’s efficiency 
is improved from 16.27 % to 63.47 % at 60 ◦C, from 17.24 % to 64.24 % 
at 80 ◦C and from 18.22 % to 65.26 % at 100 ◦C. But, at load power of 
2396 W (40 %), the FC’s efficiency is enhanced from 21.65 % to 62.72 % 
at 60 ◦C, from 22.95 % to 63.60 % at 80 ◦C and from 24.25 % to 64.76 % 
at 100 ◦C. The flow rates of fuel and air are controlled according to load 
power, as shown in Fig. 6(c)-(d), respectively. 

6. Conclusions 

A novel trial to optimize the performance of an autonomous system 
comprising PEMFC supplying a tunable load has been presented. The 
dominant parameters affecting stack efficiency to develop an adaptive 
and robust controller have been exhibited. Predominantly, TSA has been 
employed to optimally extract the operating parameters of well-known 
PEMFCs stack, namely, Nedstack PS6, considering maximum effi-
ciency points during various loading percentages. Additionally, Two 
TSA-based scenarios have been analyzed to decide the most effective 
operating parameters on the PEMFCs stack efficiency. Furthermore, set 
of statistical measurements have been carried out to signify the 
robustness and accurateness of the proposed TSA. Moreover, to over-
come the computational time issue, a neuro-fuzzy controller has been 

Table 4 
The PEMFC efficiency deviations at..Tfc = 373K  

Loading % 10 20 30 40 50 60 70 80 90 100 

5 OPs  66.2767  65.9989  65.5587  65.3932  64.8242  64.7060  64.3953  63.9199  63.7053  63.4480 
2 OPs  66.2630  65.9595  65.5699  65.1645  64.7458  64.4160  63.9943  63.3162  63.0859  62.6416 
Absolute deviations  0.0137  0.0394  0.0112  0.2287  0.0784  0.2900  0.4010  0.6037  0.6194  0.8064  

Table 5 
Statistical comparison between TSA and the others.  

Loading % MHAs Statistical indices 

Min Max Mean StD Median Variance Elapsed time (s) 

40 % AHO  64.2375  64.9638  64.7409  0.1911  64.7700  0.0365  1648.02 
GWO  64.9561  65.0689  65.0144  0.0350  65.0180  0.0012  2378.64 
PSO  63.7471  64.9183  64.4669  0.3187  64.5600  0.1016  2136.24 
TSA  63.9417  65.3932  65.0353  0.3609  65.1200  0.1303  1619.59 

100 % AHO  61.9853  62.8825  62.5314  0.1931  62.5310  0.0373  1339.78 
GWO  62.4877  63.0717  62.8462  0.1485  62.8670  0.0220  2448.95 
PSO  60.9667  63.3403  62.0620  0.6237  62.1420  0.3889  2283.31 
TSA  62.1616  63.4480  62.8878  0.3693  62.9700  0.1364  1282.28  

Fig. 4. The neuro-fuzzy controller structure.  
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designed to optimally generate the fuel and air flow rates, maintaining 
maximum PEMFC’s efficiency at different loading conditions. At 30 % 
loading condition, the stack’s efficiency is improved from 16.27 % to 
63.47 % at 60 ◦C, from 17.24 % to 64.24 % at 80 ◦C and from 18.22 % to 
65.26 % at 100 ◦C. While, at load power of 40 %, the FC’s efficiency is 
enhanced from 21.65 % to 62.72 % at 60 ◦C, from 22.95 % to 63.60 % at 
80 ◦C and from 24.25 % to 64.76 % at 100 ◦C. Our future insight is to test 
the effectiveness of the TSA in evaluating the dynamic performance of 
PEMFCs stack serving an AC motor, besides assessing the impact of 

various motor speed control methods on the overall system efficiency. 
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