Summary of chromatographic analysis methods of anti diabetic gliflozins Empagliflozin, Canagliflozin and Dapagliflozin

W. A. Zaghary
Helwan University

Shereen Mowaka
The British University in Egypt, shereen.hassib@bue.edu.eg

Moataz S. Hendy
Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt - Center of Drug Research and Development, moataz.sobhy@bue.edu.eg

Follow this and additional works at: https://buescholar.bue.edu.eg/pharmacy

Recommended Citation

This Article is brought to you for free and open access by the Health Sciences at BUE Scholar. It has been accepted for inclusion in Pharmacy by an authorized administrator of BUE Scholar. For more information, please contact bue.scholar@gmail.com.
Summary of chromatographic analysis methods of anti diabetic gliflozins
Empagliflozin, Canagliflozin and Dapagliflozin

Wafaa A. Zaghary a, Shereen Mowaka b,c,d and Moataz S. Hendy b,d

a Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo 11795, Egypt.

b Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo 11837, Egypt.

c Analytical Chemistry Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo 11795, Egypt.

d The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo 11837, Egypt.

Keywords

Review;
Bioanalytical methods;
Analytical methods;
Empagliflozin;
Dapagliflozin;
Canagliflozin;
SGLT-2
Abstract

Sodium glucose co-transporter-2 (SGLT-2) inhibitors are relatively new developed effective oral anti-diabetic agents used in treatment of type 2 Diabetes Mellitus. They present either alone or in combination with other ant diabetic agents such as linagliptin, Saxagliptin and metformin. Therefore, the necessity to explore and compare the existing analytical and bioanalytical assays used for determination of such drugs either single or in combination is crucial. Many methods were reported in the literature for the bio-analysis and analysis of three novel gliflozins with applying the method on different dosage forms and different chemical and biological samples. Furthermore, this review offered an overview of different methods used for determination of every drug alone in a tabulated comparative way. Moreover, the present review emphasized the most common stability indicating assays to be of interest to the analysts in the area of drug control.

Introduction
Around the world, about 382 million patients are suffering from diabetes mellitus (1). Global burden of disease study in 2010 shows that morbidity rate related to diabetes mellitus is doubled just in years from 1990 to 2010, also an increase with 30% in DALYs (disability adjusted life years) (2-4). Other studies shows that diabetes mellitus patients will reach almost 600 million by the year of 2035 (1). These forecast seems to be unobtrusive especially with estimated nearly 300 million people has impaired glucose tolerance (5). Global burden of Diabetes mellitus is much higher in developing countries rather than the developed ones. About 80% of persons with diabetes mellitus living currently in communities with low- to middle-income. Middle East and Asia are considered the regions with the hardest-hit. (1).

Dapagliflozin (DG) and empagliflozin (EG), and canagliflozin (CG) (Fig.1) are phlorizin derivatives, approved by FDA for use in people with type 2 diabetes that inhibit sodium-glucose co-transporter-2 (SGLT2) and thereby reduce renal tubular glucose reabsorption and hence blood glucose concentrations by promoting urinary glucose excretion.
Figure (1): Chemical structures of empagliflozin (A), canagliflozin (B) and dapagliflozin (C).
Table (1): Chromatographic methods for analysis of empagliflozin either in bulk, dosage form or biological fluids.

<table>
<thead>
<tr>
<th>Stationary phase</th>
<th>Mobile phase</th>
<th>Application</th>
<th>Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>C<sub>18</sub> column</td>
<td>phosphate buffer (pH 3): methanol, (30:70 v/v)</td>
<td>Tablet</td>
<td>UV 240 nm<sup>(14)</sup></td>
</tr>
<tr>
<td>C<sub>18</sub> column</td>
<td>Deionized water and acetonitrile in the ratio of (10:90, v/v)</td>
<td>Human plasma</td>
<td>MS/MS<sup>(15)</sup></td>
</tr>
<tr>
<td>C<sub>18</sub> column</td>
<td>Acetonitrile - water (75:25, v/v)</td>
<td>Tablet impurities</td>
<td>MS/MS<sup>(16)</sup></td>
</tr>
<tr>
<td>C<sub>18</sub> column</td>
<td>phosphate buffer (pH 4.8), acetonitrile, methanol (15:80:5, v/v/v)</td>
<td>Tablet</td>
<td>UV 227 nm<sup>(17)</sup></td>
</tr>
<tr>
<td>C<sub>18</sub> column</td>
<td>0.1% formic acid: acetonitrile, (50:50, v/v)</td>
<td>Human plasma</td>
<td>MS/MS<sup>(18)</sup></td>
</tr>
<tr>
<td>C<sub>8</sub> column</td>
<td>0.1 OPA: Acetonitrile, (70:30, v/v)</td>
<td>Tablet</td>
<td>UV 233 nm<sup>(19)</sup></td>
</tr>
<tr>
<td>C<sub>18</sub> column</td>
<td>potassium dihydrogen phosphate buffer pH (4)-methanol (50 : 50, v/v)</td>
<td>Tablet</td>
<td>UV 225 nm<sup>(20)</sup></td>
</tr>
<tr>
<td>C<sub>18</sub> column</td>
<td>0.1% aqueous formic acid: acetonitrile, 75:25, v/v</td>
<td>Tablet</td>
<td>MS/MS<sup>(21)</sup></td>
</tr>
</tbody>
</table>
Table (2): Chromatographic methods for analysis of Dapagliflozin either in bulk, dosage form or biological fluids.

<table>
<thead>
<tr>
<th>Stationary phase</th>
<th>Mobile phase</th>
<th>Application</th>
<th>Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>C<sub>18</sub> column</td>
<td>Acetonitrile : Ortho phosphoric acid the (55:45, v/v)</td>
<td>Bulk</td>
<td>UV at 203 nm (22)</td>
</tr>
<tr>
<td>C<sub>18</sub> column</td>
<td>Ortho phosphoric acid : acetonitrile (pH 4.5) (45:55 v/v)</td>
<td>Bulk</td>
<td>UV at 245 nm (23)</td>
</tr>
<tr>
<td>C<sub>18</sub> column</td>
<td>Phosphate Buffer: methanol: acetonitrile (pH 6.5) (50:30:20 v/v/v)</td>
<td>Tablet</td>
<td>UV at 240 nm (24)</td>
</tr>
<tr>
<td>C<sub>18</sub> column</td>
<td>Triethylamine: acetonitrile pH (6.8) (50:50, v/v)</td>
<td>Tablet</td>
<td>UV at 240 nm (25)</td>
</tr>
<tr>
<td>C<sub>18</sub> column</td>
<td>acetonitrile: di-potassium hydrogen phosphate (pH 6.5) (40:60 v/v)</td>
<td>Tablet</td>
<td>UV at 222 nm (26)</td>
</tr>
<tr>
<td>C<sub>18</sub> column</td>
<td>Water: acetonitrile (60/40 v/v).</td>
<td>Rat plasma</td>
<td>MS/MS (27)</td>
</tr>
</tbody>
</table>
Table (3): Chromatographic methods for analysis of Canagliflozin either in bulk, dosage form or biological fluids.

<table>
<thead>
<tr>
<th>Stationary phase</th>
<th>Mobile phase</th>
<th>Application</th>
<th>Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(_{18}) column</td>
<td>Ammonium acetate: acetonitrile (pH 3.5) (65:35, v/v)</td>
<td>Tablet</td>
<td>UV at 254 nm(^{(28)})</td>
</tr>
<tr>
<td>C(_{18}) column</td>
<td>Phosphate buffer : acetonitrile (pH 4.5) (65:35, v/v)</td>
<td>Tablet</td>
<td>UV at 248 nm(^{(29)})</td>
</tr>
<tr>
<td>C(_{18}) column</td>
<td>Phosphate buffer : acetonitrile (pH 4.5) (53:47, v/v)</td>
<td>Tablet</td>
<td>UV at 240 nm(^{(30)})</td>
</tr>
<tr>
<td>C(_{18}) column</td>
<td>Phosphate buffer : Acetonitrile : methanol (pH 4.5) (40:40:20, v/v)</td>
<td>Tablet</td>
<td>UV at 212 nm(^{(31)})</td>
</tr>
<tr>
<td>C(_{18}) column</td>
<td>20 mM potassium dihydrogen orthophosphate : acetonitrile (pH 3.2) (45 : 55, v/v)</td>
<td>Human Plasma</td>
<td>Fluorescence detection at 280 and 325 nm (excitation and emission) (^{(32)})</td>
</tr>
<tr>
<td>C(_{8}) column</td>
<td>36.46 mM Acetate buffer : acetonitrile : methanol (pH 4.5) (30:50:20, v/v)</td>
<td>Human Plasma</td>
<td>UV at 290 nm(^{(33)})</td>
</tr>
<tr>
<td>C(_{18}) column</td>
<td>0.05% v/v Triethylamine : Acetonitrile (pH 6.5) (45:55, v/v)</td>
<td>Tablet</td>
<td>UV at 215 nm(^{(34)})</td>
</tr>
<tr>
<td>C(_{18}) column</td>
<td>Acetonitrile : Ammonium acetate buffer (pH 4.5) (45:55, v/v)</td>
<td>Tablet</td>
<td>UV at 252 nm(^{(35)})</td>
</tr>
<tr>
<td>C(_{18}) column</td>
<td>Acetonitrile: water (80:20, v/v)</td>
<td>Rat plasma</td>
<td>MS/MS(^{(36)})</td>
</tr>
<tr>
<td>C(_{18}) column</td>
<td>Acetonitrile: 0.1% formic acid (90:10, v/v)</td>
<td>Rat plasma</td>
<td>MS/MS(^{(37)})</td>
</tr>
</tbody>
</table>
References

