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Abstract The CO poisoning of the platinum anodic catalyst which typically functions the catalytic

deterioration of the direct formic acid fuel cells could be minimized with a simple modification for

Pt with titanium oxide. The fabrication scheme involved the spin-coating of a Ti precursor onto a Pt

thin layer that was physically sputtered onto a Si substrate. The whole assembly was subjected to a

post-annealing processing to produce the TiOx layer (60 nm) in a porous structure (mostly Anatase)

atop of the Pt surface. The porous nature of the TiOx layer permitted the participation of Pt in the

electrocatalysis of the formic acid electro–oxidation (FAO). The annealing temperature was critical

in identifying the catalytic efficiency and durability of the catalyst toward the FAO. Interestingly, if

compared to bare-Pt substrates, the TiOx-modified catalysts could successfully steer the FAO

toward the direct dehydrogenation (favorable and less energetic) pathway with more than an order

of magnitude increase in the catalytic activity. It also provided a great opportunity for the mitiga-

tion of poisoning CO; concurrently with a lowering (~0.3 V) in the onset potential of the FAO. The

scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffrac-

tion spectroscopy (XRD), cyclic voltammetry (CV) and electrochemical impedance spectroscopy

(EIS) techniques were all combined to evaluate, respectively, the catalyst’s morphology, composi-

tion, crystal structure and activity and further to understand the role of the TiOx in the catalytic

enhancement.
� 2019 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The demand to sustain renewable, energy-efficient and eco-
friendly power sources has recently spurred a tremendous
interest in fuel cells (FCs) (Al-Akraa, 2017; Al-Akraa et al.,

2015; Boddien et al., 2011; Cheng et al., 2010a, 2010b; Li
et al., 2018; Xia et al., 2011). In fact, FCs together with
water-based electrolyzers succeeded to represent a green,

harmless and efficient saving/restoring mechanism for excess
electricity that renewable power plants may deliver under cer-
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tain conditions (plenty time) to be used later under the condi-
tions of deficiency (Dunn, 2002; Gahleitner, 2013). They could
also promote the movement into the era of transferring the

power generators rather than the power (electricity) itself
(Bayod-Rújula, 2009). That will definitely save the huge energy
losses over the long transmission and distribution of electricity.

Besides, FCs with their greenness (higher than 90% reduction
in major contaminations exhausted from the combustion of
fossil fuels), improved efficiency (up to 60% in electrical energy

conversion), robustness, reliability, safety and moving flexibil-
ity have become a decent alternative for batteries in several sta-
tionary and portable electronic devices (Borup et al., 2007;
Debe, 2012; Steele and Heinzel, 2001; Wang et al., 2011). Nev-

ertheless, for FCs to replace batteries, they must demonstrate
an economic feasibility with a remarkable increase in their
delivered power density. The amount of precious metals

(mostly Pt) employed for the catalysis of the involved electro-
chemical reactions has to be minimized and secured from
expected poisoning (Baschuk and Li, 2001; Gottesfeld and

Pafford, 1988). The rates of electrochemical reactions involved
therein have to be boosted together with a significant reduction
in the area-specific resistivity (ASR) of the FCs’ cell compo-

nents to attain an improvement for the power density. Ideally,
the ASR of the electrolyte, anode and cathode should lie close
to 0.1 O cm2 to support the 1 kW dm�3 and 1 kW kg�1

required for transport applications (Steele and Heinzel, 2011).

From another perspective, poisoning (with CO principally)
the Pt catalysts that are typically suggested for the electro-
oxidation of liquid carbon-containing fuels still represents a

major dilemma for the industry of liquid FCs. The problem
resides in the gradual marginalization of a huge portion of
the Pt surface from the participation in the targeted electro-

chemical reactions which ultimately deteriorates the overall
performance of the FCs. This poisoning was not terrible for
the H2/O2 FCs which employed H2; the smallest and cleanest

(carbon-free) fuel (Camara et al., 2002; Dhar et al., 1987). Nev-
ertheless, the use, transport and storage of H2 were challenging
from safety and economic perspectives which obliged the
industry to switch into carbon-containing liquid fuels

(Shinnar, 2003). Of the least affected liquid fuels by CO-
poisoning is formic acid (FA) which, moreover, features an
incomparable safety (a typical food-additive) and a minor

crossover through the through Nafion� membranes that typi-
cally represent the electrolyte in liquid FCs (Joó, 2008;
Markovı́ and Ross, 2002; Zhu et al., 2005). Yet, effort is still

running to minimize/overcome the CO poisoning to improve
the kinetics of the formic acid electro–oxidation (FAO) at
Pt-based catalysts.

In this regard, three major strategies were adapted. The first

manipulated the surface composition of the catalyst by doping
with foreign metals (e.g., Ru, Fe, Cu, Au, Pd) to enforce the
adsorption of FA at the Pt surface in a favorable orientation

impeding the release of poisoning CO (Ge et al., 2013;
Scofield et al., 2015). Under certain conditions, scattering the
Pt surface with minute amount of nano-Au succeeded to dis-

turb the contiguity of active Pt sites that is required to stabilize
CO; hence, mitigated the poisoning (Al-Akraa et al., 2019a).
Recently, supporting the Pt catalyst onto a conducting poly-

mer (e.g., poly-aniline) could perform similarly as nano-Au
to yield an improved FAO (Abd El-Moghny et al., 2017).
The second approach employed the surface modification of
the Pt surface with oxide nanostructures of transition metals

as Ni, Mn, Co and Cu which enriched the Pt surface with oxy-
gen moieties that facilitated the oxidative removal of poisoning
CO at relatively lower potentials (if compared to that required

at the bare-Pt surface) (Mohammad et al., 2018). These oxides
could moreover mediate the oxidation scheme of the FAO with
their multiple oxidation states and their available d-orbital

vacancies to facilitate the electron transfer and provide better
kinetics. The modification procedure (sequential layer-by-
layer or simultaneous co-deposition) of the Pt catalyst with

nano-Au or transition metal oxide nanostructures can inten-
sively impact the catalytic activity of the catalysts toward
FAO (Asal et al., 2018, 2019). The third approach involved
tuning the surface electronic properties of Pt in a way weaken-

ing the Pt–CO bonding; hence, facilitating the release of CO
and overcoming poisoning (Mohammad et al., 2018).

Relatively, most of these mechanisms succeeded to boost

FAO but the catalyst’s durability remained undesirable where
most of these Pt modifiers underwent either a phase change or
peeling off under the continuous operation in acidic environ-

ment for long time. Herein, a much more stable modifier (tita-
nium oxide) is recommended for Pt surfaces to boost the FAO.
The synthetic scheme involved the spin-coating of Ti precur-

sors over a Pt layer that was pre-sputtered on a Si wafer.
The whole sample was next subjected to annealing before test-
ing the catalyst’s activity toward the FAO.

2. Experimental

2.1. Chemicals

Chemicals of analytical grades were used to prepare the aque-
ous solutions with deionized water. The high purity of these

chemicals permitted no prior treatment before the preparation.
Alcohol-dissolved Ti (3%) precursors were purchased from
Koujundo Kagaku. Co., Ltd., Japan.

2.2. Catalyst’s preparation

The same catalyst was recommended previously for the

electro-generation of ozone and water splitting; hence, more
details about the catalyst’s preparation can be retrieved
(Al-Akraa et al., 2019b; Mohammad et al., 2007, 2009).
Shortly, the catalyst had the sequential Si–TiOx/Pt/TiOx struc-

ture. The Si–TiOx substrate was prepared by radio-frequencies
(RF) sputtering (ULVAC, Inc.) of titanium oxide (TiOx) on a
Si substrate for 10 min at room temperature (RT) under a total

gas pressure of 0.6 Pa (Ar/O2 ratio = 0.48/0.52) and an RF
power density of 6.4 W cm�2. Platinum was next deposited
on the Si–TiOx substrate for 1 min at RT under an Ar gas

pressure of 0.7 Pa and RF power density of 4.8 W cm�2.
The sputtered TiOx layer was primarily deposited to reinforce
the adhesion of the Pt layer to the Si substrate and to mitigate

the mutual diffusion of Si and Pt. The Si–TiOx/Pt was next
moved to a spin-coater (Kyowariken, K-359 S-1, Japan) where
a Ti layer was spun from alcohol-dissolved Ti (3%) precursors
onto the Pt layer in two consecutive steps (1000 rpm for 10 s

then at 3000 rpm for 30 s). After that, the electrode was dried
in air at RT for 10 min and next at 200 �C for another 10 min.
The average thickness of the spin-coated Ti layer was ca.

60 nm. Before moving into materials and electrochemical
inspection, the electrode was annealed at three different tem-
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peratures 500 �C, 600 �C and 700 �C for 10 min in air. Based
on the annealing temperature, the catalysts acquired the corre-
sponding (Ti500, Ti600 and Ti700) abbreviations.

2.3. Electrochemical measurements and materials

characterization

The electrochemical measurements were performed at RT
(25 ± 1 �C) in a two-compartment three-electrode Pyrex cell.
The Ti500, Ti600 and Ti700 electrodes were used as the work-

ing electrode while a saturated calomel electrode (SCE) and a
spiral Pt wire were used as the reference and counter elec-
trodes, respectively. All potentials, even if not mentioned, will

be reported in reference to SCE. The measurements were per-
formed using a Bio-Logic SAS potentiostat (model SP-150)
operated with EC-Lab software. Current densities were calcu-
lated on the basis of the real surface areas of the working elec-

trodes that were determined based on the charge associated the
reduction of the PtO layer (420 mC/cm2) (Trasatti and Petrii,
1991). The electrocatalytic activity of the modified electrodes

toward FAO was examined in an aqueous solution 0.3 M
FA at a scan rate of 100 mV s�1. The electrochemical impe-
dance spectroscopy (EIS) assisted in revealing the role of TiOx

in the catalytic enhancement of the Ti500, Ti600 and Ti700
catalysts toward FAO.

The diffraction patterns of the electrodes were obtained by

grazing incidence X–ray diffraction (XRD) spectroscope oper-
ated with Cu Ka (k = 1.54056 Å) radiation at 45 kV and
360 mA (D8-DISCOVER, Bruker AXS). The morphology of

the electrode was inspected using a field-emission scanning
electron microscope (FE-SEM, QUANTA FEG 250) which
was equipped with an energy dispersive X-ray spectrometer

(EDS).

3. Results and discussion

3.1. Electrochemical preliminary testing

Investigation of the cyclic voltammograms (CVs) has been
employed to reveal the electrochemical performance of the cat-
alysts and to confirm the deposition of catalyst’s constituting
ingredients. Fig. 1 shows a series of CVs measured in 0.5 M

H2SO4 solution under N2 atmosphere at a potential scan rate
of 0.1 V s�1 for a bare Pt electrode (Fig. 1A), Ti500
(Fig. 1B), Ti600 (Fig. 1C) and Ti700 (Fig. 1D). The character-

Fig. 1 The CVs obtained in N2–saturated 0.5 M H2SO4 solution at a potential scan rate of 0.1 V s�1 for a bare-Pt electrode (A), Ti500

(B), Ti600 (C) and Ti700 (D) electrodes.
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istic behavior of a polycrystalline Pt electrode appeared in all
the CVs with the oxidation of Pt to PtO (from ca. 0.6 to
1.2 V) and its subsequent reduction (at ca. 0.4 V). This accom-

panied the appearance of well-defined split hydrogen adsorp-
tion/desorption (Hads/des) peaks in the potential range from
0.0 to �0.2 V . The splitting of the Hads/des peaks infers the

exposure of different crystal facets (Pt (1 0 0) at a lower poten-
tial and Pt (1 1 1) at a higher potential) of the bare polycrys-
talline Pt substrate to the electrolyte. In fact, all the major

characteristic (Pt/PtO and Hads/des) peaks of poly-crystalline
Pt surfaces retained in the CVs of Ti500 (Fig. 1B), Ti600
(Fig. 1C) and Ti700 (Fig. 1D) catalysts which highlighted the
incomplete coverage of the Pt surface with the spun TiOx mod-

ifier. This cracked-like structure is most likely behind the little
distortion of the CV response of the spin-coated Ti500, Ti600
and Ti700 catalysts (Fig. 1B–D) which may get enlarged with

H2 spillover (Malevich et al., 1997). In addition, the potential
of the PtO/Pt reduction peak which was located at ca. 0.43 V
at the bare Pt electrode (Fig. 1A) was negatively shifted to ca.

0.32 V at the TiOx modified catalysts (Fig. 1B–D). It worth
mentioning that the onset potential (ca. 0.75 V) of the PtO/
Pt reduction which is a substrate-dependent thermodynamic

function retained unchanged at all catalysts. This might result
because of the large increase of the Pt surface area of the
Ti500, Ti600 and Ti700 electrodes if compared to that of the
bare Pt electrode. This was also obvious in the large increase

of the PtO/Pt peak currents of the TiOx modified catalysts
comparatively to that of the bare Pt electrode. One more
important observation in Fig. 1 was the increase in the

double-layer charging current (at ca. 0.0 to 0.2 V) of the

Ti500, Ti600 and Ti700 electrodes if compared to that of the
bare Pt electrode. This indicates certainly the successful depo-
sition of the capacitive TiOx film.

3.2. Morphology and structure

In fact, the inspection of the surface morphology was not so

descriptive; the typical imaging of thin films. However, the
appearance of dark and bright areas in Fig. 2A matches the
sequential multilayer structuring of the catalyst. The dark

areas can likely correspond to the topmost cracked TiOx layer
while the brighter areas correspond to the underneath Pt layer.
This visualization harmonizes with a previous inspection for

the same catalyst after a surface modification with MnOx
nanorods (Al-Akraa et al., 2019b). Fig. 2B provides a Ti-
mapping for the same catalyst (Ti700) which indicated the
homogeneous distribution of TiOx in a porous nanotexture

atop of the Si–TiOx /Pt substrate. This will likely permit the
accessibility of the electrolyte to the Pt surface, in agreement
with the electrochemical evidences.

The EDS analysis of the catalyst (Ti700) provided a confir-
mation for the deposition of all constituting ingredients in the
catalyst (Si, Ti, Pt and O) and further assessed their relative

compositions (see Fig. 2C).
Additionally, the XRD analysis in Fig. 2D assisted in

revealing the crystal structure of the Si–TiOx/Pt/TiOx catalyst
where TiOx was crystallized mostly in Anatase structure. The

diffraction peaks at 2h of 24.74, 37.24 and 46.04� corresponded
to the (1 0 1), (0 0 4) and (2 0 0) planes of TiO2 (anatase) (Kim
et al., 2007). On the other hand, the diffraction peaks at 2h of

Fig. 2 SEM image (A), elemental mapping analysis (B), EDS analysis (C) and XRD analysis (D) of the Ti700 electrode.
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39.48, 47.58 and 67.45 were assigned to the (1 1 1), (2 0 0) and

(2 2 0) planes of Pt (Mohammad et al., 2018).

3.3. Formic acid electro-oxidation (FAO): Activity assessment

Fig. 3 shows the CVs of the FAO at a bare Pt (Fig. 3A), Ti500
(Fig. 3B), Ti600 (Fig. 3C) and Ti700 (Fig. 3D) electrodes in
0.3 M FA (pH = 3.5). As expected, the FAO proceeded at
all catalysts with different activities and tolerances against poi-

soning. To understand the assessment of the catalytic activity
toward FAO as a consequence of a given structural/composi-
tional amendment in the catalyst, the inherent mechanism of

FAO on Pt-based materials should be elaborated. Generally,
a ‘dual pathway’ mechanism is adapted for this reaction
(Larsen et al., 2006; Lović et al., 2005) with the direct favor-

able dehydrogenation (FA ? CO2) and the indirect unfavor-
able dehydration (FA ? CO ? CO2). As obviously seen,
both avenues end up with CO2 but the consequences of both

are really different, particularly economically. In reality, the
direct FAO pathway proceeds with no poisoning intermediates
at low overvoltage, which eventually immune the Pt surface
against deactivation and avoid unnecessary energy loses. Eq.

Fig. 3 The CVs obtained in 0.3 M FA (pH = 3.5) at a potential scan rate of 0.1 V s�1 for a bare-Pt electrode (A), Ti500 (B), Ti600 (C)

and Ti700 (D) electrodes.

Fig. 4 Nyquist plots obtained in 0.3 M FA (pH = 3.5) at a

potential of 0.2 V for a bare-Pt electrode (a, inset), Ti500 (b),

Ti600 (c) and Ti700 (d) electrodes. Frequency range 10: mHz-

100 kHz.
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(1) represents the oxidation half-reaction involved in this direct
pathway where the first anodic peak in the forward potential
scan (at ca. 0.2 V in Fig. 3A) depicts its corresponding electro-

chemical response in an acidic (0.3 M FA) medium. The high-
est (peak) current, Ip

d, of this direct oxidation pathway probes
the density of the free active (non-poisoned) Pt sites available

to participate in this direct pathway.

HCOOH ! CO2 þ 2Hþ þ 2e� ð1Þ
On the other hand, the indirect dehydration pathway of

FAO involves the release of CO intermediate that has a strong
adsorption affinity at the Pt surface. As long as the Pt surface

is kept protected from hydroxylation (typically occurs if over-
potential exceeded ca. 0.4 V), the CO remains adsorbed and
blocking the active Pt sites from participating in the FAO; a

phenomenon known as ‘‘poisoning of the Pt surface”. If over-
potential higher than 0.4 V is supplied, the Pt surface gets
hydroxylated and, hence, CO can be oxidized to CO2. The sec-

ond peak in the forward potential scan of Fig. 3A corresponds
to this indirect oxidation (CO ? CO2) with a peak current (Ip-
ind) at ca. 0.6 V. Equations 2–4 describe the mechanism of the

indirect pathway of FAO. It becomes now manifested
the energy loss (corresponding to an increase of ‘‘0.6–0.2 =
0.4 V” in overpotential) associating the poisoning avenue of
FAO. The same result can be obtained if the onset potential

(Eonset) of FAO and CO oxidation are compared. Fortunately,
the indirect oxidation of CO retrieves again the activity of the
Pt surface to participate again in the FAO. This explains

the high current (Ib) associating the backward cathodic scan
peak.

HCOOHþ Pt ! Pt� COads þH2O ð2Þ

H2Oþ Pt ! Pt�OHþHþ þ e� ð3Þ

Pt� COads þ Pt�OH ! 2Ptþ CO2 þHþ þ e� ð4Þ
The modification of the Pt catalyst was inspired from the

incredible interest in using TiOx supports in the catalytic oxi-

dation of small organic molecules. This was not only because
of the large surface area they imparted particularly if used in
nanostructures but also for their potential to mediate the oxi-

dation reaction via the multiple oxidation states and the vacant
d-orbital of Ti (Li et al., 2017; Song et al., 2007; Wang and
Xia, 2010). They possessed, moreover, a short charge transport

distance and little carrier transport losses, which undoubtedly
presages enhanced electron transfer kinetics for many electro-
catalytic applications (Li et al., 2017; Roy et al., 2011). Never-
theless, it remained to justify a more quantitative index to

compare the impact of the modification on the performance
of different catalysts toward FAO. It was really comfortable
to employ the Ip

d/Ip
ind and Ip

d/Ib in this assessment. A relatively

higher value of Ip
d/Ip

ind indicates certainly the availability of
more free active Pt sites for the direct FAO while a higher
Ip
d/Ib value designates a lower CO poisoning level for the Pt

surface. These two indices along with Eonset of the direct
FAO will be evaluated to sort the different catalysts based
on their activity toward the FAO.

First of all, these indices (Ip
d/Ip

ind and Ip
d/Ib) read ca. 0.6 and

0.2, respectively at the bare Pt electrode (Fig. 3A). Surpris-
ingly, the Ti500, Ti600 and Ti700 electrodes (Fig. 3B-D) sur-
passed the bare Pt electrode in the catalytic performance

toward FAO with Ip
d/Ip

ind values of 6 (tenfold increase), 7.6

(~13 times increase) and 10 (~17 times increase) and Ip
d/Ib val-

ues of 0.4, 0.45 and 0.67, respectively. In addition, they all
offered a significant (ca. 250–300 mV) lowering in Eonset if
compared to that of the bare Pt electrode. This indicated the

improved catalytic activity and associated tolerance against
CO poisoning of the Ti500, Ti600 and Ti700 catalysts toward
FAO.

3.4. Role of TiOx in the catalytic enhancement

The electrochemical impedance spectroscopy (EIS) technique

was used to probe the charge transfer resistance (Rct) of the
different catalysts during FAO. Fundamentally, the EIS tech-
nique visualizes the electrode/electrolyte interface as a combi-
nation of passive electrical circuit elements, i.e., resistance,

Fig. 5 LSVs for oxidative CO stripping obtained at the bare Pt

(a), Ti500 (b), Ti600 (c) and Ti700 (d) electrodes in 0.5 M Na2SO4

(pH = 3.5). Potential scan rate: 50 mVs�1. Before measurements,

CO was adsorbed from 0.5 M FA at the open circuit potential for

10 min.

Fig. 6 Chronoamperometric (i-t) curves obtained in 0.3 M FA

(pH= 3.5) at a potential of 0.2 V for a bare-Pt electrode (a), Ti500

(b), Ti600 (c) and Ti700 (d) electrodes.
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capacitance and inductance. If an alternating current is applied
to this interface, Ohm’s law can predict the resulting current.
The representation of EIS measurements appears in one of

two plots called ‘‘Nyquist and Bode diagrams”. Fig. 4 shows
the Nyquist plots obtained at the bare Pt (Fig. 4a), Ti500
(Fig. 4b), Ti600 (Fig. 4c) and Ti700 (Fig. 4d) catalysts in a

0.3 M aqueous solution of FA (pH = 3.5) at a potential of
0.2 V in the frequency range (10 mHz to 100 kHz). Principally,
the diameter of the extrapolated semicircle in the Nyquist dia-

gram represents the charge transfer resistance (Rct) that
is equivalent to the polarization resistance of the electrochem-
ical system (RIBEIRO et al., 2015). Hence, the larger the
diameter of the semicircle the higher Rct, and hence, the slower

kinetics of the reaction (Yavuz et al., 2015). As clearly seen in
Fig. 4, the Rct of the Ti700 (0.1 kX) is the smallest if compared
to those of the Ti600 (0.37 kX) and Ti500 (0.96 kX) catalysts.
Promisingly, all these Rct values were very low if compared to
that of the bare Pt electrode (18 kX). This finding agrees per-
fectly with the data of Fig. 3 to confirm undoubtedly a facili-

tated charge transfer and boosted catalytic activity of the
spin-coated Si–TiOx/Pt/TiOx catalysts toward FAO.

To understand the role of TiOx in the catalytic enhance-

ment of FAO, CO was allowed to be chemisorbed from
0.5 M FA at an open circuit potential at the four investigated
electrodes for 10 min. Then this adsorbed CO layer was

stripped electrochemically in 0.5 M Na2SO4 (pH = 3.5), as
shown in Fig. 5. The CO oxidation occurred at 0.72 V with
a peak current intensity of ca. 1.8 mA cm�2 at the bare Pt elec-

trode (see Fig. 5a). After the modification with TiOx
(Fig. 5b–d), two interesting features appeared. The peak cur-
rent intensity was lowered dramatically to 0.53 mA cm�2 at

the Ti700 electrode; inferring a lower opportunity for CO poi-
soning, exactly as the data of Fig. 3 informed. This lowering in
the peak current density was concurrent with a negative shift

(ca. 0.4 V) in the peak potential of CO oxidation, which again
highlights the favorable modification in the electronic proper-
ties of the Pt surface in the way facilitating the oxidative
removal of poisoning CO, in agreement with the data of

Fig. 4. Based on the data of Figs. 4 and 5, one can safely
assume a potential role for TiOx in facilitating the charge
transfer during FAO at Pt surfaces, mitigating the CO adsorp-

tion and facilitating the oxidative desorption of CO at rela-
tively much lower potentials that ultimately favor the direct
pathway of FAO.

3.5. Stability measurements

Furthermore, the catalytic stabilities of the spin-coated Si–

TiOx/Pt/TiOx catalysts were inspected and compared with

Fig. 7 SEM image (A), elemental mapping analysis (B), EDS analysis (C) and XRD analysis (D) of the Ti700 electrode after the

electrochemical investigations of Figs. 1, 3–6.
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that obtained at the bare Pt electrode. Fig. 6 shows the
chronoamperometric (i-t) curves obtained at the bare Pt
(Fig. 6a), Ti500 (Fig. 6b), Ti600 (Fig. 6c) and Ti700 (Fig. 6d)

catalysts in a 0.3 M aqueous solution of FA (pH = 3.5) at a
potential of 0.2 V for 2000 s. A quick inspection of Fig. 6 again
sorts ascendingly the bare Pt, Ti500, Ti600 and Ti700 catalysts

according to their activities toward FAO. However, a poor
catalytic stability is obviously seen at the bare Pt electrode
which owned a fast chronic decay in current; in agreement with

previous investigations (Mohammad et al., 2018). Fascinat-
ingly, this undesirable decay disappeared at the spin-coated
Si–TiOx/Pt/TiOx electrodes (Fig. 6b–d). The maximum stabil-
ity, in terms of the highest and steady-state current density,

was obtained at the Ti700 catalyst. It worth mentioning that
the Ti700 catalyst exhibited the highest activity (see Fig. 3),
the lowest Rct (Fig. 4) and the minimum CO poisoning degree

(Fig. 5). All these findings pointed out the importance of the
modification of Pt-based catalysts with the spin-coated TiOx
layer in minimizing the CO poisoning and enhancing the

charge transfer at the Pt surface.
To test the catalyst’s durability, the Ti700 electrode was

morphologically, compositionally and structurally inspected

once again after the electrochemical inspections (Figs. 1, 3–
6). The SEM image (Fig. 7A), elemental mapping analysis
(Fig. 7B), EDS analysis (Fig. 7C) and XRD analysis
(Fig. 7D) did not show a significant variation from the data

in Fig. 2 (for the same catalyst before the electrochemical
investigations). This once again confirms the high stability of
the proposed Ti700 catalyst toward the FAO.

4. Conclusion

A sequential compilation of physical sputtering, spin coating
and a post-annealing processing was employed in the synthesis
of a Si–TiOx/Pt/TiOx catalyst for the formic acid electro–oxi-

dation (FAO). The annealing temperature could influence the
catalytic performance of the catalyst where 700 �C was proved
optimum in terms of the observed catalytic efficiency (17-fold

more than that of the bare Pt catalyst) and the largest negative
shift (~300 mV) in the onset potential of FAO. The EIS and
stability measurements agreed consistently with the electrocat-
alytic data for the superiority of the Ti700 catalyst. The role of

TiOx in the catalytic enhancement appeared in facilitating the
charge transfer during FAO perhaps with the vacant d-orbital
and the multiple oxidation states of Ti. It might further tailor

geometrically the Pt surface against the adsorption of poison-
ing CO that ultimately favor the direct pathway of FAO.
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