Tomographic Assessment of Different Attachment Sizes in Implant Supported Overdenture

Fardos N. Rizk
The British University in Egypt, fardos.rizk@bue.edu.eg

Marwa Sabet

Wael Amer

Follow this and additional works at: https://buescholar.bue.edu.eg/dentistry

Part of the Prosthodontics and Prosthodontology Commons

Recommended Citation
https://buescholar.bue.edu.eg/dentistry/84

This Article is brought to you for free and open access by the Health Sciences at BUE Scholar. It has been accepted for inclusion in Dentistry by an authorized administrator of BUE Scholar. For more information, please contact bue.scholar@gmail.com.
TOMOGRAPHIC ASSESSMENT OF DIFFERENT ATTACHMENT SIZES IN IMPLANT SUPPORTED OVERDENTURE

M.E. Sabet* ; W.S. Amer** and F.N. Rizk***

ABSTRACT

Objective: This research was carried to evaluate which ball size mounted on bar splinting two implants supporting overdenture is more favorable regarding bone height and density.

Material & methods: Two implants(Tut Dental Implant System,ECDI Cairo, Egypt) splinted by bar (OT bar Multiuse attachments,Cas,RHEIN 83, ITALY) carrying two balls (OT Cap attachments, Cas, RHEIN 83 Italy) were inserted in n=10/gp. Patients were divided into two groups according to the size of the balls used which were either micro1.8mm or macro 2.5mm (control group). For all patients overdentures were constructed & conventional tomograms were taken. Crestal bone height & density around the implants in zone-1(osseointegration-zone) and zone-2 at insertion, six and twelve months were measured and statistically analyzed (Student-t-test, p≤0.05).

Results: Crestal bone heights: The two groups showed bone resorption however, statistically significant difference between the two groups was found, where micro-size ball showed less bone resorption with mean difference0.57±0.08 from insertion to twelve months in comparison to macro-size ball which showed 1.03±0.20 mean difference from insertion to twelve months. Bone density: The two groups showed increase in bone density. In zone-1: Statistically significant difference was found between the two groups, where micro-size ball showed less increase in bone density with mean difference 26.19±4.02 from insertion to twelve months in comparison to macro-size ball which showed 44.12±7.34 mean difference from insertion to twelve months. In zone-2: Statistically non-significant difference was found between the two groups , where micro-size ball showed mean difference 59.02±2.59 from insertion to twelve months in comparison to macro-size ball which showed 59.96±6.26 mean difference from insertion to twelve months.

Conclusion: Micro-size balls show less bone resorption however, macro-size balls show more increase in bone density.

* Associate professor of prosthodontics, Faculty of Dentistry Ain-shams university, Cairo, Egypt
** Associate professor of Oral Radiology, Faculty of Dentistry, Suez Canal, University, Cairo, Egypt
*** Lecturer of Prosthodontics, Faculty of Dentistry, Misr University for Science and Technology, Cairo, Egypt
INTRODUCTION

The treatment of completely edentulous mandible with two implant retained overdenture is well-accepted treatment option and is now considered the first choice for edentulous patients. Patient satisfaction with implant-retained overdentures is related to esthetics and function. The clinical comfort achieved is dependent on many factors including the degree of retention provided by proper location and orientation of implants, fitness of the prosthesis and the use of attachment elements as bar and clips, balls or magnets. Although magnets and studs are less expensive and easier to use, provide more favorable load transfer to bone yet, bar with additional attachments provide greater retention and stability, permit splinting of implants, mask excessive residual ridge atrophy and has been reported to be more successful.

Reviewing the previous studies it was found that implants splinted with a bar or left with ball attachments, rated significantly higher stability and chewing comfort for the mandibular overdenture than implants with magnet attachments, thus patients strongly preferred bar-clip and ball-socket attachments over magnet attachments.

Trying to modify the form of the bar, Leonard et al. presented a procedure for fabrication of cobalt-chromium milled bar with four ball attachments supporting a mandibular overdenture and found that the prosthesis met the requirements for masticatory efficiency, natural esthetics, and maintenance of health of residual tissues.

The rapid rise in requests for radiographic examinations in dentistry has been associated with the growing popularity of oral implantology in the management of partial or total edentulism in general. Oral implant imaging can involve three distinct imaging modalities: conventional tomography, spiral multislice CT, and CBCT. Their superiority in implant imaging over plain radiographs is attributable to their ability to produce cross-sectional images along the arches. These images provide details of bone morphology and dimensions as well as locations of vital structures.

Dental implants are often a predictable treatment option for replacement of missing teeth; however, presurgical assessment is critical to avoid problems related to inadequate bone volume, axial alignment relative to occlusal loads, or location of critical structures such as the mandibular canal. Standard panoramic and periapical radiographs do not provide cross-sectional information and are therefore insufficient for implant site evaluation. Three-dimensional imaging techniques such as computerized tomography (CT) and conventional tomography can provide the needed information; however, many implants are still placed without the benefit of 3D imaging because of the increased cost to the patient or lack of availability.

Conventional tomography, provides cross-sectional views of proposed implant sites. With conventional tomography, the x-ray tube moves in a straight line in one direction while the film moves in the opposite direction. Only objects lying in a plane coinciding with the pivot point of a line between the tube and the film remain in focus. Studies that have assessed the accuracy of conventional tomography for implant site assessment have reported mixed results. One reason for this is that blurring and magnification error that can adversely affect interpretation of the tomographic images. A study of 235 endosseous implants, found that conventional tomography resulted in a statistically non significant discrepancies between the planned prosthetic and the actual bone trajectories in the mandibular anterior area. On the other hand, conventional tomography was 2.5 times more accurate in predicting implant size selection than panoramic and periapical radiographs.
In this study two implants splinted by a bar carrying two ball attachments were used to combine the advantages of bar by allowing splinting of implants and better retention and stability of the prosthesis with the advantage of less load transfer to bone provided by the freedom of movement of ball attachment. The idea of this research was aroused to evaluate whether the difference in sizes of ball attachments would affect the surrounding supporting structures or not using conventional tomographic radiology.

MATERIALS AND METHODS

The University’s Clinical Research Ethics Board approved the research protocol including the exclusion/ inclusion criteria and the informed consent. The inclusion criteria required that participants should be completely edentulous no more than five years, medically and psychologically suited for implant surgery, able to complete study forms, and willing to commit to one year of participation in the trial after receiving new dentures. Clinical and radiographic examination of the patients’ residual alveolar ridge revealed adequate bone height, width (Type2AB). Volunteers were excluded from the study if they had: received treatment previously with oral implants, need for additional pre-prosthetic surgery, inadequate interocclusal distance, insufficient bone height for at least a 10 mm mandibular implant, or a history of systemic, neurologic , autoimmune, metabolic or hormonal disorders that may affect bone quality, delay post operative healing or contribute to bone resorption.

Twenty completely edentulous patients were selected from the out-patient of the prosthodontic departments with age ranging between 52 and 65 years. All patients were subjected to routine clinical and radiographic examinations before inserting the implants. Due to limited financial resources, the decision was made to provide a mandibular overdenture retained by 2 implants (Tut Dental Implant System; Egyptian Co. for dental ECDI Cairo, Egypt) inserted bilaterally in the canine region. The implants were splinted by using OT BAR (OT bar Multiuse attachments, Cas, RHEIN 83, ITALY) with two OT CAP ball attachments (OT Cap attachments, Cas, RHEIN 83 Italy) to provide retention of the overdenture. Implants with diameter (3.9 x 13 mm) were placed in bone to the level of the cortical plate and the oral mucosa was sutured over it. Following a 3-month healing period, the implants were exposed to receive healing abutments. An alginate impression (Alginmax, Major Prodotti. Dentari SPA. Moncalieri. Italy) was made using stock tray to pour a cast upon which a special tray was made. Two weeks later the healing abutments were replaced with castable plastic cylinder bar abutments (Tut Dental Implant System; Egyptian Co. for dental implants(ECDI Cairo, Egypt)) which were screwed into position with retaining screws. Definitive impression of the abutments and the residual ridge was taken with closed tray (indirect impression technique) using polyether impression material (Impregum F; 3M ESPE, St. Paul, Minn) manipulated according to the manufacturer’s instructions. After removal of the impression from the patient’s mouth, the castable plastic cylinder abutments were unscrewed to be replaced by the healing abutments. The implant replicas were screwed into the castable plastic cylinder abutments which were fitted carefully in the impression to pour the definitive cast for fabrication of the bar.

Castable plastic pattern of OT bar was cut to a suitable length and adhered to the castable plastic cylinder abutments on the definitive cast. Two marks were made to divide the bar into three equal thirds and two OT castable plastic ball attachments were adhered on the two marks.
According to the size of the two balls attachments the patients were divided into two groups:

Group I: received macro size balls having 2.5mm diameter (Fig 1).

Group II: received micro size balls having 1.8mm diameter (Fig 2).

The overdenture bar, balls and abutments were casted following the conventional casting methods in cobalt-chromium alloy (Remanium GM 380+; Dentaurum, Ispringen, Germany) The assembly was tried in the patient’s mouth and checked for marginal fit, contour and accurate seating. The assembly was screwed then a primary alginate impressions (Alginmax, Major Prodotti, Dentari SPA, Moncalieri, Italy) for the upper and lower jaws were made, to obtain study casts upon which special trays were made. Final impressions were made using polyether impression material (Impregum F; 3M ESPE, St. Paul, Minn), to obtain master casts upon which occlusion blocks were made. Centric occluding relation was recorded following the conventional wax wafer technique. Setting up of teeth was done according to modified lingualized occlusion using modified cusple teeth (Vita-pan acrylic teeth, Vita Bad Sackingen-Germany). The waxed up dentures were tried in the patient’s mouth, then flasked and processed into high impact heat cure acrylic resin (Lucitone199, Dentsply, York, PA-USA).

Relief of the fitting surface of the overdenture was done above the ball attachments until the overdenture was fully seated with the nylon caps of the ball attachments properly seated above the balls. Self cure acrylic resin (Lucitone 199; Dentsply) was inserted in the relief area to pick up the nylon caps and the patient was instructed to close in centric until complete polymerization has taken place. Any excess material was removed and the mandibular overdenture was removed and left for bench curing for about 30 minutes. Any necessary adjustments were carried out to eliminate occlusal interference and patients were instructed to maintain strict oral hygiene measures and return for recall appointments after six and twelve months.

Digital tomography procedures

Digital tomograms were taken with the Promax 3D Max (PlanmecaCo., Helsinki, Finland), digital x-ray device. The Promax 3D Max provides 4 slices as selected by the operator (3 cross-section and 1 longtudinal) using one sweeping method. The narrow x-ray beam makes one sweeping movement and the rotation center moves simultaneously along the image layer with 6mm slice thickness. The angle of the first exposure is +7° counterclockwise, while the angle of the third exposure is +7° clockwise.
Automatic exposure control was used to control density and contrast of the images. The tomograms were exposed and assessed for diagnostic quality by an oral and maxillofacial radiologist.

Image analysis

The images of the study were analyzed radiometrically and radiodensitometrically.

Radiometric analysis

Planmeca Romexis software used for capturing, viewing, and processing images acquired with Planmeca’s digital x-ray devices. It is fully Dicom compatible. Regarding the cross-section view, two lines were drawn parallel to the long axis of the implant on the buccal and lingual surfaces Fig 3. The two lines were extended from the alveolar crest to the apical end of the implant and tangent to the implant serration then the average of the two sides were calculated.

Radiodensitometric analysis

IDRISI Kilimanjaro software was used to assess the radiodensity around the implants under investigation. IDRISI software divides the area surrounding the dental implant into two zones with standardized width {zone1 (osseointegration zone) and zone 2} Fig 4. The software analyzes the images through the following steps; image restoration, image enhancement, and density measurement. Image restoration technique allow for the geometric correction of the images. The procedure was followed by image enhancement technique which allows contrast adjustment of all the images, then implant edge enhancement, followed by subtracting the implant from the background image (surrounding bone). Finally, the density measurements were calibrated by quantifying the image on 256 grey scales. Zero scale was given to the totally radiolucent region and 255 was given to the totally radiopaque region while values in between represent the grey shades.

Statistical analysis

Instat for windows, version 3.036 (Statistical Services Center, University of Reading, UK) was used for data analysis. Student-t-test was used to compare the different effect of micro and macro ball attachments mounted on a bar retaining overdenture on crestal bone height surrounding the implant and on bone density. The significance level was set at $p \leq 0.05$.
RESULTS

Effect of different ball sizes on the crestal bone height surrounding the implants

TABLE (I) Mean and standard deviations of the effect of different ball sizes on crestal bone heights surrounding the implants

<table>
<thead>
<tr>
<th></th>
<th>Micro-ball</th>
<th></th>
<th>Macro-ball</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ±sd</td>
<td>Mean ±sd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>At-insertion</td>
<td>2.88 mm 0.26</td>
<td>2.8 mm 0.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>After six months</td>
<td>2.60 mm 0.398</td>
<td>2.27 mm 0.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>After twelve months</td>
<td>2.31 mm 0.296</td>
<td>1.77 mm 0.32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mean and standard deviations of the effect of different ball sizes on crestal bone height surrounding the implants in table I shows decrease in the crestal bone height surrounding the implants throughout the study period in both groups.

TABLE (II) Mean differences and standard deviations of the effect of different ball sizes on crestal bone heights surrounding the implants

<table>
<thead>
<tr>
<th></th>
<th>Micro-ball</th>
<th></th>
<th>Macro-ball</th>
<th></th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean difference ±sd</td>
<td>Mean difference ±sd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-6 m</td>
<td>0.27mm 0.06</td>
<td>0.54mm 0.12</td>
<td>5.000</td>
<td><0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-12m</td>
<td>0.3mm 0.06</td>
<td>0.49mm 0.09</td>
<td>7.856</td>
<td><0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-12m</td>
<td>0.57mm 0.08</td>
<td>1.03mm 0.20</td>
<td>9.550</td>
<td><0.0001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mean difference, standard deviations, and student t test are shown in table II. Student-t-test showed statistically extremely significant difference between micro and macro sizes ball attachments on crestal bone height surrounding the implants throughout the study period where macro-sized ball attachment showed higher crestal bone height reduction than micro-sized ball attachment.

Effect of different ball sizes on the bone density around the implants

Table (III) Mean and standard deviations of the effect of different ball sizes on the bone density of zone (1) around implants

<table>
<thead>
<tr>
<th></th>
<th>Micro-ball</th>
<th></th>
<th>Macro-ball</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ±sd</td>
<td>Mean ±sd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>At-insertion</td>
<td>108.44 4.527</td>
<td>90.187 1.147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>After six months</td>
<td>118.32 6.065</td>
<td>110.56 4.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>After twelve months</td>
<td>134.63 6.15</td>
<td>134.307 7.69</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mean and standard deviations of the effect of different ball sizes on bone density of zone (1) around implants in table III shows increase in bone density in both groups throughout the study period.
Table (IV) Mean differences and standard deviations of the effect of different ball sizes on the bone density of zone (1) around implants

<table>
<thead>
<tr>
<th>Time</th>
<th>Micro-ball</th>
<th>Macro-ball</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean difference ±sd</td>
<td>Mean difference ±sd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-6 m</td>
<td>9.88 ±2.01</td>
<td>20.37 ±3.94</td>
<td>10.606</td>
<td><0.0001</td>
</tr>
<tr>
<td>6-12m</td>
<td>16.31 ±3.26</td>
<td>23.7 ±4.39</td>
<td>6.085</td>
<td><0.0036</td>
</tr>
<tr>
<td>0-12m</td>
<td>26.19 ±4.02</td>
<td>44.12 ±7.34</td>
<td>9.582</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Mean difference, standard deviations, and student t test are shown in table IV. Student-t-test showed statistically extremely significant difference between micro and macro sizes ball attachments in bone density in zone 1 around implants through the period from 0-6months & 0-12months and statistically very significant difference from 6-12months where macro-sized ball attachment showed higher increase in bone density than micro-sized ball attachment throughout the study period.

Table (V) Mean and standard deviations of the effect of different ball sizes on the bone density of zone (2) around implants

<table>
<thead>
<tr>
<th>Time</th>
<th>Micro-ball</th>
<th>Macro-ball</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ±sd</td>
<td>Mean ±sd</td>
</tr>
<tr>
<td>At-insertion</td>
<td>131.59 ±2.03</td>
<td>127.39 ±14.08</td>
</tr>
<tr>
<td>After six months</td>
<td>152.94 ±2.986</td>
<td>148.409 ±15.89</td>
</tr>
<tr>
<td>After twelve months</td>
<td>190.61 ±2.82</td>
<td>187.35 ±19.275</td>
</tr>
</tbody>
</table>

Mean and standard deviations of the effect of different ball sizes on the bone density of zone (2) around implants in table V shows increase in bone density in both groups throughout the study period.

Table (VI) Mean differences and standard deviations of the effect of different ball sizes on the bone density of zone (2) around implants

<table>
<thead>
<tr>
<th>Time</th>
<th>Micro-ball</th>
<th>Macro-ball</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean difference ±sd</td>
<td>Mean difference ±sd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-6 m</td>
<td>21.35 ±2.98</td>
<td>21.02 ±2.27</td>
<td>0.394</td>
<td>0.817</td>
</tr>
<tr>
<td>6-12m</td>
<td>37.66 ±3.91</td>
<td>38.94 ±5.486</td>
<td>0.8497</td>
<td>0.4008</td>
</tr>
<tr>
<td>0-12m</td>
<td>59.02 ±2.59</td>
<td>59.96 ±6.26</td>
<td>0.6205</td>
<td>0.5386</td>
</tr>
</tbody>
</table>

Mean difference, standard deviations, and student t test are shown in table VI. Student-t-test showed statistically non significant difference between micro and macro sizes ball attachments regarding bone density in zone (2) throughout the study period.
DISCUSSION

Implants were placed in the canine region bilaterally (B and D) regions as in this position the bar splinting these implants is straight rather than curve, thus having less potential load per surface area compared to implants splinted in the premolar region (A and E regions) with curve bar. 17

Nowadays it is documented that crestal bone resorption is not only unavoidable, but also time related.18 In this study crestal bone height reduction was about 0.57mm in case of micro-size ball and 1.03 in case of macro-size ball which complies with the success criteria of Albrektsson et al 19 being lower than 1.5mm yearly resorption after abutment connection. Bone loss may be attributed to the masticatory load applied to the posterior parts of the overdenture resulting in unfavorable torque forces on the balls and abutments. The greater reduction in the macro-size cases in comparison to micro-size may be attributed to the increased profile height of the ball (lever arm) magnifying the torque on crestal bone around the implant. 29 This was in agreement with Kenney and Richards 21 who found that increasing profile height of stud attachments increases the lateral load on the implant and surrounding tissue.

The increase in bone density (zone-1 and zone-2) of micro-size and macro-size balls agrees with the results of Quirynen et al 22 which demonstrated an increase in density of peri-implant bone structures over six months to four years period after implant placement. This increase is considered a positive response of bone to load applied within its physiologic limit and adaptive capacity. 23

The significant increase in bone density (zone-1) in case of macro-size than micro-size balls may be attributed to the fact that the larger surface area of macro-size ball gives greater retentive force in comparison to the micro-size ball which in turn creates significantly higher stresses. 24 This increase in stresses affects directly the thickness and approximation of bone trabeculae causing greater increase in density. 25-26

Regarding zone-2, the non significant difference between micro-size and macro-size balls regarding bone density may be attributed to dissipation of stresses before reaching the far away zone.

CONCLUSION

Within the limitations of this study it was concluded that:

Micro-size ball attachments show less crestal bone height reduction however, macro-size ball attachments show more increase in bone density in case of implant supported overdenture.

Conventional tomography may be represented as an alternative modality to overcome increased cost and lack of availability of CT and CBCT in the three dimensional evaluation of implant site.

REFERENCES

5- Jemt T, Book K, Linden B, Urde G.: Failures and compli-

