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Abstract: This study introduces a pioneering structural equation modeling (SEM)-based framework
to assess BIM-DT adoption readiness in sustainable construction. The research’s approach delves
into the intricate correlation between key success factors (KSFs) and sustainable parameters (SPs),
fostering BIM-DT deployment. This interdisciplinary perspective provides a holistic understanding
of the impact of KSFs on BIM-DT adoption. The research aims to identify KSFs and parameters,
prioritize their relative weights for BIM-DT implementation, analyze KSFs and SPs correlations,
and offer practical insights into the findings. The results revealed the importance of sustainability
considerations in BIM-DT adoption, with cost optimization and resource management playing
pivotal roles. The findings also revealed that the readiness of the organization to adopt the technology,
availability of technology operators, availability of standards and codes for the new technology,
availability of knowledge, skills, and competencies to adopt the technology, and availability of funds
and financial investment are the top-ranked KSFs contributing to the successful adoption of BIM-DT.

Keywords: sustainable construction; digital twins; BIM; structural equation modelling; SEM;
developing countries

1. Introduction

The United Nations outlined the 2030 agenda for sustainable development goals
(SDGs) in 2015, which consists of seventeen interlinked SDGs designed to address urgent
worldwide issues [1]. Together, these goals offer a comprehensive structure that signifi-
cantly intersects with and impacts the fundamental principles and actions of sustainable
construction and sustainable industry [2]. Sustainable construction employs a multifaceted
strategy to diminish the environmental impact of construction operations and ensure eco-
nomic feasibility across the lifecycle of constructed buildings and structures [3]. Sustainable
construction places significant emphasis on optimizing resource utilization, conserving
energy, curtailing waste generation, and augmenting the well-being and health of the
occupants [4].

Major industries are presently undergoing a paradigm shift due to digital transfor-
mation and artificial intelligence (AI) applications [5,6]. As a result, the fourth industrial
revolution (Industry-4.0) is developed to comply with the digitalization revolution and big
data generation [7,8]. The McKinsey Global Institute has recently highlighted a remarkable
surge in digitization, catalyzed by the onset of the COVID-19 pandemic, resulting in a
two-fold amplification of revenue in contrast to the pre-pandemic estimate [9]. Therefore,
automation and digitalization have developed new business models, tools, and techniques
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for the construction industry propelled by the exponential augmentation of computational
capabilities and availability of real-time data [6,10].

Building Information Modeling (BIM) is a revolutionary digital representation technol-
ogy that has transformed the construction industry. It encompasses capturing the physical
and functional characteristics of building projects and facilitating a collaborative and in-
tegrated approach to construction management [11,12]. The evolution of BIM marks a
significant shift from traditional construction practices, introducing efficiency in project vi-
sualization, data management, and stakeholder collaboration. This technology incorporates
seamlessly with other digital advancements such as the digital twin (DT) and the Internet
of Things (IoT), playing a pivotal role in the digital transformation of the construction
sector [13].

The revolution of DT portrays novel possibilities for simulating, examining, and opti-
mizing real-world structures and systems. Drawing data from diverse sources, including
BIM models, IoTs, and sensors, creates precise modeling, tracking, and management of
buildings and structures through the different stages of the building’s lifecycle [14,15].
Fusing real-time data and virtual models promises transformative outcomes at all stages of
a building’s lifecycle [15]. In particular, the endeavor to achieve environmental, social, and
economic sustainability in construction is poised for integration and revolution [16].

In this context, BIM integrated with DT is a cutting-edge approach for construct-
ing and managing built environments. This integration incorporates BIM’s detailed 3D
modeling and information management capabilities with the DT’s real-time data and sim-
ulation features. This synergy promotes a dynamic and interactive model of a building
or infrastructure throughout its life cycle, providing enhanced visualization, predictive
maintenance, and operational efficiency. Furthermore, it enables stakeholders to enforce
informed decisions based on the virtual model and real-world data, significantly improving
project planning, execution, and sustainability [15–18].

The convergence of BIM and DT through real-time data integration unlocked cyber-
physical integration, facilitating real-time monitoring and informed decision-making [17].
This fusion extends BIM’s static information with the dynamic insights from DT, syner-
gistically improving the construction process [17]. Therefore, exploring the implications
and success factors of BIM integrated with DT for construction sustainability is exception-
ally significant for Industry 4.0 version and shapes the future of sustainable construction
practices [18,19].

In numerous developing countries, BIM has gained significant traction and is con-
sidered a crucial tool in construction processes [13,14]. However, the integration of DT
has seen limited implementation in most developing nations, including Egypt and Gulf
countries [15]. Hence, it is imperative to acknowledge the prevailing research deficiencies,
specifically within the Egyptian and Gulf construction sectors, where the formal integration
of BIM-DT adoption to attain construction sustainability is absent [16,17]. Furthermore,
professionals in the construction industry have a deficiency in their capacity to adequately
evaluate the primary factors influencing BIM-DT adoption and its implications for sustain-
able construction practices.

Accordingly, the novel contribution of this research is the presentation of a compre-
hensive theoretical framework leveraging structural equation modeling (SEM) designed
to appraise the readiness level for adopting the BIM-DT approach within the sustainable
construction sector. This innovative approach facilitates a deep understanding of the com-
plex relationships between KSFs, implementation of BIM-DT technology, and SPs. This
interdisciplinary approach contributes to a holistic comprehension of the KSFs influencing
BIM-DT readiness. To this end, the primary objectives of this study include (1) pinpointing
the crucial KSFs and relevant parameters that contribute to the successful adoption of
BIM-DT in the sustainable construction industry, (2) evaluating and prioritizing the rela-
tive weights of KSFs and relevant parameters to highlight the most significant factors for
BIM-DT implementation, (3) developing a proposed SEM model to establish and examine
the relationship between KSFs and SPs regarding the successful adoption of BIM-DT, and
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(4) conducting a comparative analysis of the relative weights of KSFs, offering justifications,
and providing practical insights into their implications.

Evaluating the factors influencing the adoption of BIM-DT necessitates the examina-
tion of several aspects that contribute to the sustainability of construction practices. The
elements that may be involved include organizational support, technology infrastructure,
data privacy, data security, availability of competencies, financial concerns, market ori-
entation, and various other external factors [16,18,19]. Each factor plays a distinct role
in influencing BIM-DT adoption and requires meticulous deliberation during the design
and implementation phases. By assessing the factors influencing the adoption of BIM
and DT, this study reveals specific domains in which technological infrastructure and data
security can be attained. These findings have the potential to provide valuable insights with
implications for project sustainability. In addition, gaining comprehension of the intercon-
nectedness among various factors influencing the adoption of BIM-DT and their collective
influence on sustainable construction parameters can provide project managers and stake-
holders with valuable insights to facilitate well-informed decision-making throughout the
project lifespan, ultimately leading to the attainment of construction sustainability [20].

2. Literature Review
2.1. Emergence and Role of BIM-DT in the Construction Industry

BIM and DT have emerged as pivotal digital technologies for facilitating the sharing
and management of information, thus establishing the fundamental basis for integrating
various technologies within the construction industry [12]. BIM is a collaborative process
that involves creating, managing, and utilizing digital representations of the physical and
functional characteristics of a building throughout its lifecycle. BIM integrates various
aspects of a construction project, including design, planning, construction, and mainte-
nance within a centralized digital model [21]. The attainment of a full representation is
facilitated by utilizing specialized software tools, such as ArchiCAD, Revit, and similar ap-
plications [22]. BIM models contain comprehensive data on structural design, construction
procedures, and operational elements. The models mentioned above fulfill multiple func-
tions, including facilitating design cooperation, aiding construction planning, and enabling
effective facility management [23]. Many countries have observed the emergence and
adoption of robust BIM standards and their corresponding systems. Consequently, there
has been growing recognition among owners, contractors, and subcontractors regarding
the fundamental principles and operational methodologies of BIM [24].

The deployment and applications of BIM standards have transcended national bound-
aries, rendering a global shift towards standardized, efficacious, and collaborative con-
struction project management. One of the most substantial strides in this direction is the
creation of the ISO 19650 series by the International Organization for Standardization (ISO).
This series offers information management and BIM collaboration frameworks to facilitate
collaboration in international construction projects. ISO 19650 was developed based on
British standards (BS) 1192 and Publicly Available Specification (PAS) 1192-1, instrumental
in achieving up to a 22% reduction in construction costs. This standardization signifies a
global consensus on efficient BIM practices, underpinning the industry’s requisite for a
globally applicable approach.

Further to the ISO standards, buildingSMART, a not-for-profit organization, has
emerged as a critical party in the international arena. buildingSMART is liable for Industry
Foundation Class (IFC) standards, including a thorough range of processes and information
capabilities customized for the built environment industry. IFC standards encompass
industry-specific data model schemas, approaches for business process documentation,
and a standard repository for BIM objects, marking a substantial enhancement in the global
standardization of BIM initiatives.

The United Kingdom (UK) and United States (US) have also contributed significantly
to developing BIM standards. In the UK, the Construction Industry Council (CIC) and BIM
Task Group co-produced guidelines compliant with government objectives, whereas the
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AEC-UK Committee spotlighted standardizing design data production, encompassing the
development of the AEC (UK) BIM Protocol. In the US, institutions such as Pennsylvania
State University have created thorough BIM standards, including the BIM Project Execution
Planning Guide, which engenders approaches for designing and developing BIM practices.

A DT is a computer-generated model for simulating, analyzing, and optimizing the
performance, operation, and maintenance of real-world structures or systems [25]. DT is
typically constructed using data acquired from diverse sources such as sensors and BIM
models. The primary purpose of DT is to accurately represent the current condition of a
physical object or system [26]. DT can be regarded as an expansion of BIM, wherein BIM
offers the static details of the building, while DT offers the dynamic aspects of the building.

The concept of DT has garnered significant attention in recent years; however, the
absence of a universally accepted definition has resulted in confusion and implementation
challenges [27,28]. Various frameworks have been proposed to address this ambiguity in
classifying DT, each providing distinct perspectives on their fundamental components and
functions [29,30]. These frameworks serve to elucidate the concept of DT, aid in selecting
the most suitable framework tailored to specific requirements, and enhance clarity in
discussions on this technology.

A notable framework proposed by Sacks et al. [29] emphasizes three crucial dimen-
sions: fidelity, purpose, and integration. Fidelity pertains to the level of detail and accuracy
inherent in DT, while purpose delineates its intended applications, encompassing design,
monitoring, or control. Integration characterizes the extent of connectivity between a DT
and its physical counterpart. Yildiz et al. [28] proposed the idea of a virtual factory (VF)
based on DT, along with its architecture designed to facilitate the modeling, simulation,
and assessment of manufacturing systems. This study developed a multi-user virtual
reality (VR) framework for collaborative and coordinated learning and training scenarios
to support the lifecycle processes of a factory. These frameworks, and those introduced by
Tao et al. [30], provide valuable tools for comprehending and effectively implementing DT.

2.2. Applications and Challenges of Integrating BIM-DT in Construction

Integrating BIM with DT is a transformative approach that revolutionizes construction
projects and offers a comprehensive solution that spans the entire lifecycle. This integration
introduces a spectrum of invaluable applications across the construction industry. Con-
struction monitoring has emerged as a cornerstone application, empowering the real-time
monitoring of construction progress, change tracking, and the immediate identification
of potential clashes. This real-time oversight significantly elevates project management
standards, ensuring smooth operations and timely resolution of issues [31]. In parallel,
lifecycle management is another pivotal application that delivers exhaustive insights crucial
for maintenance and facility management throughout a building’s lifecycle. It optimizes
long-term performance and sustainability by enabling predictive maintenance strategies
and efficiency enhancements [32].

Moreover, data-driven decision-making is considered another application wherein real-
time construction site data informs dynamic updates in BIM models. This synergy fosters
a culture of making well-informed choices, enhancing the precision and effectiveness of
decision-making processes [33]. Finally, a significant application lies in its role in advancing
smart cities and infrastructure. Vital networks such as transportation, utilities, and public
facilities can be optimized by facilitating the design, management, and maintenance of
interconnected systems. This collaboration creates sustainable and seamlessly integrated
urban environments that adapt and evolve efficiently [31].

The integration of BIM and DT provides dynamic decision-making tools for construc-
tion projects. However, challenges emerge from their differences: DT offers real-time,
adaptable models, whereas BIM relies on static representations [31]. Furthermore, their
integration faces obstacles arising from disparities in data formats, software compatibility,
and interoperability, thereby presenting a significant challenge [18]. In addition, data pri-
vacy and security concerns arise when sharing sensitive project information between these
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systems, potentially exposing vulnerabilities. Implementing and overseeing integrated
systems can lead to operational risks, amplifying complexities and the likelihood of errors
or inefficiencies [34]. Moreover, the necessity of interdisciplinary coordination in merging
BIM and DT may result in communication gaps and coordination difficulties, demanding
substantial effort to overcome [31].

2.3. Impact of BIM-DT Integration on Sustainability in Construction

BIM-DT can be integrated by incorporating real-time data into a BIM model. This
integration facilitates cyber-physical integration, enabling the real-time monitoring of
assets and activities. The potential benefits of BIM-DT include enhancing the construction
process and improving the sustainability of buildings [33]. The construction industry
can optimize its functions using BIM-DT, reducing waste and energy consumption and
improving efficiency [35]. BIM-DT can positively impact three pillars of sustainability:
environmental, social, and economic [20].

BIM-DT significantly influences environmental sustainability in two key aspects: en-
ergy efficiency and resource management. Energy efficiency is influenced by the ability
of designers and building operators to optimize energy performance, reduce energy con-
sumption, and minimize greenhouse gas emissions through simulations and real-time
monitoring [36,37]. BIM-DT plays a crucial role in resource management through its ability
to furnish precise information regarding material use, waste production, and resource
consumption [35,36].

BIM-DT significantly influences social sustainability in two key areas: occupant com-
fort and well-being and stakeholder engagement. The adjustment of indoor environmental
conditions, including air quality, lighting, and temperature, has been shown to positively
impact occupant comfort, health, and well-being [19,24,38]. Stakeholder engagement is
influenced by its impact on various factors. One such aspect is facilitating effective commu-
nication and collaboration among stakeholders, enabling transparency, engagement, and
involvement in sustainable decision-making processes [39,40].

BIM-DT significantly influences economic sustainability through two key dimensions:
cost optimization and predictive maintenance. By utilizing BIM-DT, many stakeholders
can discover energy inefficiencies, optimize maintenance schedules, and make informed
decisions based on data to minimize operational costs effectively [22,41,42]. BIM-DT facili-
tates the optimization of maintenance activities by leveraging real-time data and analysis,
thereby enabling proactive maintenance strategies. This proactive approach effectively
reduces the downtime and repair costs associated with equipment failures [22,41,42].

In this context, BIM can contribute to environmental sustainability by facilitating
energy-efficient designs and construction practices. This is achieved through features such
as energy analysis tools that simulate energy consumption and identify opportunities
for optimization [43,44]. Additionally, BIM can support life cycle assessment (LCA) by
providing comprehensive data on materials and construction processes, enabling informed
decisions about environmentally friendly options [45].

Furthermore, BIM promotes social sustainability by creating healthier and more com-
fortable living environments. It facilitates accessibility analysis, ensuring inclusive spaces
for disabled people. Moreover, BIM tools can optimize indoor environmental quality, ther-
mal comfort, and lighting conditions, leading to healthier and more productive spaces [46].
By enhancing stakeholder communication and collaboration, BIM can create more inclusive
and successful projects that address community needs.

With regard to DT, its vital contribution to sustainability is its ability to facilitate
energy-efficient operation. By continuously monitoring energy consumption and analyz-
ing building performance, DT can identify areas for improvement and optimize energy
usage. This can lead to significant reductions in carbon emissions and operational costs.
Additionally, DT can be used to simulate the impact of various design modifications and
operational changes, helping identify energy-saving strategies before implementation [47].
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Beyond energy efficiency, DT can also contribute to sustainability by optimizing
resource management and reducing waste. By monitoring resource consumption (e.g.,
water and materials) and analyzing operational data, DT can identify opportunities for
optimization and implement measures to reduce waste and resource usage. This can
contribute to a more circular economy for the construction and operation of buildings.
Moreover, DT can improve maintenance practices by predicting and preventing equipment
failures and reducing unnecessary repairs and resource consumption [48]. Overall, DT
offers a promising approach for achieving sustainability in built environments. DT can
contribute to reduced energy consumption, efficient resource management, and improved
building performance by enabling advanced monitoring, analysis, and optimization. As
the technology matures, its impact on sustainable built environments is expected to grow
significantly [47,48].

2.4. Key Success Factors Influencing the Adoption of BIM-DT in Construction

According to Pfoser et al. [49], the adoption of BIM-DT is influenced by six main
factors: (1) perception and mental change, (2) presence of adequate infrastructure, (3) legal
and political framework, (4) advanced and meticulous planning, (5) readiness to adopt
technologies, and (6) connection and cooperation. Similarly, Giusti et al. [50] argued that
incorporating BIM-DT technology can be facilitated by various factors such as simulation,
integration platforms, optimization, traceability, data analytics, and intelligent systems.

In terms of the impact of external factors, Zhang et al. [51] discovered that the uti-
lization of BIM-DT technology in the construction sector is influenced by government
regulations, industry standards, market demand, and availability of supporting infras-
tructure. Based on Van Tam et al. [16], strategic planning, project management support,
collaboration, communication, and change management strategies positively impact the
BIM-DT adoption process. Moreover, Sepasgozar et al. [52] argued that compatibility with
existing systems, ease of use, interoperability, data security, and availability of appropriate
hardware and software solutions are among the main factors influencing BIM-DT adoption.
Along with the above-mentioned factors, Liu et al. [53] found that human factors play
a crucial role in adopting BIM and DT technologies. Examples include user acceptance,
training and education, leadership support, and organizational culture.

While the existing literature extensively covers the emergence and implementation
of BIM and DT in the construction industry, there are notable gaps in the research and
key areas that require further exploration. In this context, further research is imperative
to study the challenges facing the integration of BIM and DT, particularly in developing
countries, including factors such as technological infrastructure, data privacy, and security.
Few studies have highlighted organizational readiness for BIM-DT adoption, including
top management support, cultural readiness, and stakeholder awareness. Further, the
financial aspects of BIM-DT adoption and its market demand, especially in developing
countries, have not been thoroughly explored. Additionally, while BIM-DT’s potential to
improve sustainability is recognized, there is a dearth of profound initiatives exploring
how it impacts sustainable construction’s environmental, social, and economic aspects.

3. Research Methodology

As previously elucidated, this research initiative proposes a theoretical framework that
harnesses the power of SEM and is tailored to assess the state of readiness for integrating
the BIM-DT approach within the realm of sustainable construction. This methodology
promotes an insightful comprehension of the intricate interrelations that underpin KSFs
toward substantial implementation of BIM-DT technology in the sustainable construction
sector in conjunction with SPs. This interdisciplinary approach fosters a comprehensive
understanding of KSFs that shape readiness for BIM-DT adoption. A mixed-method
research approach was used in pursuit of this objective, encompassing five distinct phases,
as shown in Figure 1.
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3.1. Phase 1: Exploratory Phase

A literature review was conducted to develop a fundamental theoretical understanding
and identify current deficiencies and obstacles within the construction industry [54]. The
search process was conducted using specified keywords in isolation or conjunction. Some
examples of keywords that can be identified in the text include “Building Information
Modelling”, “Digital Twin”, “Sustainable Parameters”, and “Key success factors in BIM-
DT”. Ali et al. [55] argue that the relevant extensive literature review (ELR) should include
well-established databases such as Web of Science and Scopus. In addition, it was essential
to ensure that the references gathered for this research encompassed scholarly publications
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focused on engineering and construction project management, conference proceedings,
authoritative government reports, and relevant books.

3.2. Phase 2: Breakdown of the Structure of Factors

The brainstorming technique was employed during this phase to classify and group
the identified lists of KSFs. Brainstorming is a frequently employed methodology that
facilitates the cultivation of creativity and collaboration, thus facilitating the generation of
ideas, the resolution of problems, and the organization of information. When categorizing
and arranging a collection of variables, brainstorming can be a valuable approach for
expediting the process and ensuring comprehensive and well-structured outcomes [56,57].

A group of five construction professionals with varying levels of expertise in the
construction field ranging from 5 to 20 years was invited to participate in an online brain-
storming session to categorize the KSFs. The professional roles include one project manager,
three BIM engineers, and one technical office engineer, representing three different coun-
tries: Egypt, Saudi Arabia, and the United Arab Emirates (UAE).

The brainstorming session resulted in the categorization of seven discrete clusters:
(1) organizational support and readiness (OSR); (2) technological infrastructure (TI); (3) data
privacy, security, and compliance (DPSC); (4) knowledge, expertise and competencies (KEC);
(5) financial considerations (FC); (6) market and external factors (MEF); and (7) sustainable
parameters (SP). Table 1 and Figure 2 summarize the KSFs and SPs that influence the
adoption of the BIM-DT approach.
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Table 1. KSFs and SPs influencing the adoption of BIM-DT.

Category Category ID Factors Factor ID References

Organizational Support
and Readiness

OSR

Support of top management OSR1 [58–61]
Readiness of the organization to adopt the technology OSR2 [51,58,62,63]

Readiness of personnel to change and adopt new technology OSR3 [62,64–67]
Stakeholders’ awareness of technology benefits OSR4 [16,61,68,69]

Technological
Infrastructure

TI
Availability of technological infrastructure TI1 [61,67,70,71]

Availability of skilled individuals to operate the technology platform TI2 [16,62,68]
Availability of the technology operators TI3 [62,68,72,73]

Data Privacy, Security, and
Compliance DPSC

Assurance of data privacy and security DPSC1 [42,61,74,75]
Availability of clear project documentation and requirements DPSC2 [16,62,72,76,77]
Availability of standards and codes for the new technology DPSC3 [53,63,64,67,78]

Knowledge, Expertise and
Competencies KEC

Availability of knowledge, skills, and competencies to adopt the technology KEC1 [73,79,80]
Availability of practical cases of the technology KEC2 [16,72,81]

Continuity of research and development efforts to enhance the adaptability of the technology KEC3 [17,73,82]

Financial Considerations FC
Availability of funds and financial investment FC1 [61,83,84]

Affordability of software and hardware upgrading and maintenance cost FC2 [53,85,86]
Availability of governmental supports, initiatives, and tendering law FC3 [51,65,87]

Market and External
Factors

MEF

Market demand for the technology MEF1 [66,78,88,89]
Insurance of coordination and collaboration between project parties MEF2 [90–92]

Managing the industry resistance to adopt the new technology MEF3 [26,93,94]
Availability of key performance indicators to track the progress MEF4 [95–97]

Sustainable parameters SP

Energy efficiency SP1 [36,37]
Resource management SP2 [35,37]

Occupant comfort and well-being SP3 [19,24,38]
Stakeholder engagement SP4 [39,40]

Cost optimization SP5 [22,41,42]
Predictive maintenance SP6 [19,37,98]
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3.3. Phase 3: Pilot Survey

To evaluate the extent of coverage, effectiveness, and uniformity of the primary survey
questionnaire employed in this study, a pilot study was undertaken following the grouping
of the KSFs [99,100]. As indicated by Saunders et al. (2019), the prescribed minimum sample
size for a pilot study consists of ten participants. Accordingly, a pilot survey was designed
and sent to a cohort of ten experts. This cohort included individuals with substantial
experience in the construction sector and academics with over ten years of expertise.
The participating individuals assumed the following responsibilities: (1) analyzing and
comprehending question phrasing, (2) identifying troublesome questions, (3) verifying the
compilation of KSF groups, along with their corresponding KSFs and SPs integrated into
the survey, and (4) providing constructive feedback. The valuable insights provided by
these experts were carefully integrated, resulting in the adjustment of several questions.

3.4. Phase 4: Questionnaire Survey

The study encompassed a wide spectrum of countries, including Egypt, Saudi Arabia,
the United Arab Emirates, Qatar, and Bahrain. The geographical spread of the subject
being investigated ensures that it is not limited to the local context [101,102]. The inclusion
of participants from many nations contributes to the expansion of the data pool and
enables a more comprehensive analysis of research findings [103]. Furthermore, this
diversity facilitates the active participation of researchers in expanding the existing body of
knowledge worldwide and promotes the development of intercultural understanding [104].

The primary aim of the questionnaire survey was twofold: first, to assess the effec-
tiveness of different KSFs that influence the adoption of BIM-DT, and second, to evaluate
the impact of including BIM-DT on SPs. The survey was divided into four sections, and
the introductory section was allocated to collect general information from the participants.
The purpose of the second section was to evaluate participants’ viewpoints regarding the
efficacy of several KSFs in enhancing BIM-DT. The third section’s primary objective was
to collect participants’ perspectives regarding the degree to which BIM-DT integration
influences SPs. The last section inquired about the extra KSFs that respondents considered
significant for identification. In the second and third sections, participants were asked to
assess the KSFs and SPs using a 5-point Likert scale, a methodology previously employed
in similar studies [105,106].

Sampling and Targeted Population

The sampling technique employed in this study is a probability sampling method that
specifically utilizes random sampling. As indicated by Noor et al. [107] and Ali et al. [108],
this technique has been widely employed in scientific research and has produced reliable
outcomes. The survey participants were required to meet the following criteria: (1) possess
a bachelor’s degree or higher in civil engineering, architecture, or a related discipline;
(2) demonstrate moderate to advanced knowledge of BIM-DT; and (3) have at least five
years of experience in the construction sector. The questionnaire was developed using
Google Forms and disseminated via several Internet channels, such as LinkedIn.

According to Elmousalami et al. [109], it is imperative to ensure that the selected
sample size for analysis aligns with the specified objectives of the study. This study aims to
develop an SEM model to assess readiness to adopt a BIM-DT approach within the sustain-
able construction industry. It is important to note that the application of SEM requires a
relatively small sample size. Conventionally, the suggested minimum sample size for em-
ploying SEM is 100 or more responses [109–111]. In total, 100 valid responses were collected
for the survey. These responses were scrutinized to ensure their reliability, accuracy, and
relevance to the research objectives using Cronbach’s alpha internal consistency method.

3.5. Phase 5: Structural Equation Modelling (SEM)

SEM embodies intricate correlations, causal interplay, and multifaceted pathways to
scrutinize the intricate correlations among diverse latent constructs and pertinent vari-
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ables [112]. SEM dissects the repercussions of multiple pivotal variables to unveil the
fundamental correlations underpinning latent constructs and variables [99]. As expounded
by Ismaeel and Mohamed [113] and Zhao et al. [114], the execution and orchestration of the
SEM model entails three foundational procedures, including the formulation of a model
within the SEM paradigm aimed at delineating correlations between latent constructs and
observed variables, an appraisal of the model to assess the performance or congruence of
the SEM model employing quantitative indices, and an adjustment of the model to refine
the performance or congruence if deemed requisite.

In relation to sample size and SEM, antecedent research endeavors contend that one of
the merits intrinsic to SEM adoption is the reduced demand for sample sizes and sampling
protocols to execute the SEM model [115]. As Kline [116] posited, a sample size of 100 may
be commensurable for SEM estimations. Moreover, Boomsma [117] introduced a parameter
called “r”, rendering the ratio between latent constructs and observed variables to ascertain
the requisite minimal sample size and effectively execute and operationalize the SEM model.
When r equals 4, a minimum of 100 sample sizes is stipulated; notably, the diminution of the
minimal sample size becomes progressively pronounced with increasing parameter values.

The SEM framework comprises two pivotal models: measurement and structural.
The measurement model scrutinizes the intricate correlations between latent and observed
variables, whereas the structural model meticulously evaluates the interconnections among
latent constructs. Within this framework, the measurement model is thoroughly molded
through the application of confirmatory factor analysis (CFA), a technique substantiated by
Fan et al. [118] and Zhao et al. [114]. CFA, an indispensable aspect of SEM, examines the cor-
relations between the observed (endogenous) variables and pertinent latent constructs, ulti-
mately contributing to assessing the SEM model’s robustness, reliability, and validity. This
phase empirically governs the correlation dynamics within the model, a domain thoroughly
explored in the study of Ismaeel & Mohamed [119] and Gouda Mohamed et al. [115].

The coefficients of indicators within the realm of CFA elucidate the regression coef-
ficient, discerning the intricate interplay between the observable variable, denoted by X,
and the latent constructs rendered by Y (Equation (1)). This coefficient, denominated as the
loading factor, presumes a numerical value that spans from 0 (indicative of an exceedingly
weak correlation) to 1 (indicating a state of perfect alignment). Zhao et al. [114] posited that
a loading factor approximating 1 signifies a robust correlation. Following the assertions of
Gefen et al. [120], loading factor values should surpass or be equal to 0.507 to engender
outcomes featuring dependability, authenticity, and credibility.

Simultaneously, the primary parameters contributing to the successful adoption of
BIM-DT in the sustainable construction industry were meticulously unveiled. These pa-
rameters encompassed organizational support and readiness; technological infrastructure;
data privacy, security, and compliance; knowledge, expertise and competencies; finan-
cial considerations; and market and external factors. Each parameter was denoted as a
latent construct, while the pertinent success factors manifested as observed (endogenous)
variables. In this context, the loading factor values effectively encapsulated the relative
importance weights of each key success factor and associated parameter in establishing
a comprehensive readiness assessment model for BIM-DT, encompassing both success
factors and factors underpinning sustainability practices.

The platform utilized was the analysis of moment structure (AMOS), namely IBM
SPSS—AMOS, which scrutinizes the intricacies of the confirmatory factor analysis (CFA)
quandary. This incorporated the assimilation of the outputs from the SPSS questionnaire
into the AMOS platform, thus revealing a crucial step that governs the CFA methodology.
The paramount significance of this step laid in appraising and assigning priority to the
relative weights of key success factors and relevant parameters contributing to the success-
ful adoption of BIM-DT in the sustainable construction industry. This evaluation process
further validated the model’s congruence and substantiated the overall robustness of the
SEM paradigm. Equation (1) quantifies the loading factor associated with each key success
factor. In this equation, the symbol “X” signifies the latent constructs within the model,
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“F” encapsulates the loading factor attributed to the observed variable, “Y” represents the
observed variable, and “Z” denotes the inherent error term.

Y = (F × X) + Z (1)

Reliability and Validity of SEM Workflow

The evaluation of reliability and validity encompasses both observed variables and
latent constructs, facilitated by deploying composite reliability (CR), Cronbach’s alpha, and
the average variance extracted (AVE). The process of confirming the convergent validity of
the loading factors and the error variance inherent in each key success factor was initiated
using CR, as shown in Equation (2). This metric ranges from 0 to 1, with 1 signifying the
zenith of estimated reliability. For confirmatory endeavors, the CR benchmarks are set
at 0.80 or higher for exemplary confirmatory application, 0.70 or higher within confirma-
tory contexts, and 0.60 or higher to accommodate exploratory inquiries, as endorsed by
Ali et al. [100,121]. Cronbach’s alpha, computed via SPSS, concurrently underscores the
convergent validity and reliability of latent constructs and observed variables. Optimal
Cronbach’s alpha values are situated at 0.80 or higher for classifications denoting excellence,
0.70 for designations of competence, and 0.60 to support exploratory endeavors, aligning
with the insights of Ismaeel & Mohamed [119].

CR =
(∑

p
i=1 λi)ˆ2

(∑
p
i=1 λi)ˆ2 + ∑

p
i V(δi)

(2)

where λi is the standardized loading for the ith indicator, V(δi) is the error term variance for
the ith indicator, and p is the number of indicators. Conclusively, the AVE, articulated in
Equation (3), scrutinizes the average commonality within each latent construct, representing
a mechanism for evaluating convergent and divergent validity. AVE values must surpass
the threshold of 0.50, accompanied by the interrelation of analyzed factors, which ought to
account for a minimum of half the variance in their corresponding indicators, following
Elmousalami et al. [109].

AVE =
∑k

i=1(λi)ˆ2

∑k
i=1(λi)ˆ2 + ∑k

i=1 Var(ei)
(3)

4. Results and Analysis
4.1. Demographic Information for Respondents

As the questionnaire survey targeted multiple countries in the Middle East, Figure 3
illustrates the percentage of responses collected from each country. Egypt exhibited the
highest participation rate at 61%, followed by Saudi Arabia at 23%, and the United Arab
Emirates at 7%. Meanwhile, Qatar and Bahrain contributed smaller percentages of 5%
and 4%, respectively. Overall, the survey revealed varying levels of engagement across
these countries, with Egypt emerging as the most prominent contributor. It is worth
mentioning that the study’s geographical focus, predominantly on the countries mentioned
above, may have influenced the results, as various regions might present unique challenges
and readiness levels for BIM-DT adoption. This geographical concentration potentially
limits the generalizability of the findings to other contexts in which the BIM-DT dynamics
might differ.

Figure 4 displays the frequency and percentage of respondents’ positions within their
respective organizations. The organizations’ position distribution reflects a diverse and
comprehensive structure. Technical roles, such as project managers, BIM engineers, and
technical office engineers, were significant, highlighting a focus on technical expertise and
project execution. Leadership positions, including senior managers and consultants, were
well represented, totaling 18%. Academia was emphasized, with teaching assistants, lectur-
ers, and professional roles accounting for 19%. A balanced mix of roles, such as directors
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and senior managers, showcased effective management, while specialized functions, such
as contractors and architects, contributed 2%. This composition created a well-rounded
and multifaceted organizational framework.

Figure 5 depicts the percentage distribution of years of experience among the respon-
dents who participated in the survey. The distribution of years of experience within the
organizations show a balanced mix of employees across various experience ranges. A
significant proportion (64%) of individuals fell within the intermediate experience levels of
5 to 10 years, while a substantial portion (25%) possessed over 15 years of experience. No-
tably, 11% of the employees had more than 20 years of experience. This diverse distribution
signified a blend of fresh insights, intermediate skills, and seasoned expertise, collectively
contributing to a comprehensive perspective. The experience levels of the respondents
with BIM-DT technology varied, which may have introduced a bias in their responses.
Respondents’ familiarity with the technology and the topics under discussion could have
influenced their perceptions, especially regarding the assessment of key success factors and
sustainability parameters in BIM-DT adoption.
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4.2. The Measurement Model Appraisal

The awareness of the survey respondents and the extent of their expertise are signifi-
cant factors in upholding the genuineness and caliber of the data captured, intended for
subsequent analytical scrutiny. Through the initial scrutiny of questionnaire responses
by implementing CFA and SEM, the dependability of the derived questionnaire feedback
was assessed to confirm its accuracy and alignment with the methodological research
framework and objectives. The results shown in Table 2 and Figure 6 demonstrate the
reliability and validity of the measurement model, ensuring compliance with the previously
mentioned CR, AVE, and Cronbach’s alpha threshold values.
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Table 2. Reliability and validity of the measurement model.

Latent Constructs Observed Variables Loading Factor CR AVE Cronbach’s Alpha

SP

SP1 0.667

0.94883 0.44905 0.905

SP2 0.687
SP3 0.616
SP4 0.631
SP5 0.734
SP6 0.679

OSR

OSR1 0.800

0.95551 0.64206 0.876
OSR2 0.836
OSR3 0.781
OSR4 0.787

TI
TI1 0.829

0.94919 0.72675 0.887TI2 0.862
TI3 0.866

DPSC
DPSC1 0.744

0.92829 0.60325 0.817DPSC2 0.785
DPSC3 0.800

KEC
KEC1 0.799

0.92923 0.5999 0.818KEC2 0.761
KEC3 0.763

FC
FC1 0.851

0.94121 0.649 0.844FC2 0.807
FC3 0.756

MEF

MEF1 0.730

0.93814 0.52334 0.813
MEF2 0.669
MEF3 0.791
MEF4 0.698

Buildings 2024, 14, x FOR PEER REVIEW 16 of 27 
 

FC 
FC1 0.851 

0.94121 0.649 0.844 FC2 0.807 
FC3 0.756 

MEF 

MEF1 0.730 

0.93814 0.52334 0.813 
MEF2 0.669 
MEF3 0.791 
MEF4 0.698 

 
Figure 6. Reliability tests of latent constructs. 

4.3. The Structural Model Appraisal 
Following the establishment of a robust measurement model by adopting CFA, CR, 

Cronbach’s alpha, and AVE, the subsequent step thoroughly examined the interrelation-
ships among the variables. This analytical endeavor aimed to encapsulate the nuanced 
relative importance weights characterizing each key success factor and its pertinent pa-
rameters, thereby facilitating the creation of a readiness assessment model tailored to the 
realm of BIM-DT. This comprehensive model thoroughly addresses the KSFs and foun-
dational elements underpinning sustainability practices slanted toward BIM-DT de-
ployment in sustainable projects. 

To scrutinize the structural models, this research employed path coefficient estima-
tion (β), t-test estimation, and the goodness of fit (GOF) index. The initial phase involved 
the determination of standardized beta coefficients, facilitated via β and t-test estima-
tion, pertaining to the paths within the SEM model. The substantial magnitude of β un-
derscored the pronounced influence of exogenous latent factors on the endogenous con-
struct in the SEM model. Furthermore, the significance level was highlighted via the β 
and t-test estimations, rendered as a p-value, as delineated in Table 3. As demonstrated 
in Figure 7, the outcomes of these tests bolstered the assertion proposed by Hair et al. 
[121] regarding the considerable correlations between latent constructs. This was sub-
stantiated by the values presented, which surpassed the designated threshold, as shown 
in Table 3. 

  

Figure 6. Reliability tests of latent constructs.

4.3. The Structural Model Appraisal

Following the establishment of a robust measurement model by adopting CFA, CR,
Cronbach’s alpha, and AVE, the subsequent step thoroughly examined the interrelation-
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ships among the variables. This analytical endeavor aimed to encapsulate the nuanced
relative importance weights characterizing each key success factor and its pertinent param-
eters, thereby facilitating the creation of a readiness assessment model tailored to the realm
of BIM-DT. This comprehensive model thoroughly addresses the KSFs and foundational
elements underpinning sustainability practices slanted toward BIM-DT deployment in
sustainable projects.

To scrutinize the structural models, this research employed path coefficient estimation
(β), t-test estimation, and the goodness of fit (GOF) index. The initial phase involved
the determination of standardized beta coefficients, facilitated via β and t-test estimation,
pertaining to the paths within the SEM model. The substantial magnitude of β underscored
the pronounced influence of exogenous latent factors on the endogenous construct in
the SEM model. Furthermore, the significance level was highlighted via the β and t-test
estimations, rendered as a p-value, as delineated in Table 3. As demonstrated in Figure 7,
the outcomes of these tests bolstered the assertion proposed by Hair et al. [122] regarding
the considerable correlations between latent constructs. This was substantiated by the
values presented, which surpassed the designated threshold, as shown in Table 3.
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Table 3. Standardized path coefficients within the envisaged SEM elucidate the interconnectedness
between latent constructs.

Covariance Links Correlation Estimate
(CS)

Path Coefficient Estimation
(ß)

Standard Error
(SE)

t-Test
Estimation p-Values

OSR <-> SP 1.232 0.704 0.168 7.326 0.000
TI <-> SP 1.159 0.662 0.158 7.316 0.000

KEC <-> SP 1.174 0.671 0.156 7.518 0.000
MEF <-> SP 1.061 0.606 0.158 6.696 0.000
FC <-> SP 1.314 0.751 0.177 7.428 0.000

DPSC <-> SP 1.119 0.639 0.162 6.9 0.000

Subsequently, the GOF criterion served as an inferential benchmark, substantiating
the extent to which the proposed SEM model elucidated the empirical data. This pro-
cess involved meticulous verification and testing of the overarching path inherent in the
plausible and parsimonious SEM model [123]. The GOF metrics meticulously employed
in this research for the envisaged SEM model are detailed in Table 4. This exposition
reveals an alignment between the models and the dataset, thereby attesting to the robust fit
between the measurement model and the dataset harnessed in this scholarly investigation.
CMIN/df, entailing the ratio of minimum discrepancy to degrees of freedom following
X2 modification, encapsulates the adequacy of the model. In contrast, the comparative
fit index (CFI) accentuates congruence between a postulated model and the given data.
Additionally, the Tucker–Lewis Index (TLI) compares the baseline model’s degrees of free-
dom against those of the postulated model, encompassing their associated discrepancies.
Correspondingly, the incremental fit index (IFI) discerns disparities in degrees of freedom
between the baseline and postulated models, underscoring their ratios. Table 5 visually
conveys the nuanced relative importance weights characterizing each key success factor
and its pertinent parameter, thereby facilitating the creation of a readiness assessment
model tailored to the realm of BIM-DT. This comprehensive model thoroughly addresses
the KSFs and foundational elements underpinning sustainability practices slanted toward
BIM-DT deployment in sustainable projects.

Table 4. Indices of GOF and their corresponding thresholds for determining acceptability.

GOF Metric SEM Model Value Recommended Level

CMIN/DF 1.826 1–2 [113]
Chi-square 828.041 p > 0.01 [113]

RMSEA 0.0713 ≤0.10 [112]
CFI 0.972 >0.9 [113]
NFI 0.69 0–1 [114]
TLI 0.947 ≥0.92 [115]
IFI 0.775 0–1 [116]

TLI/NFI 1.372 >0.9 [113]

Table 5. Relative importance weights of the observed variables.

Latent Constructs Observed Variables Relative Weight

SP

SP1 0.166
SP2 0.171
SP3 0.153
SP4 0.157
SP5 0.183
SP6 0.169
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Table 5. Cont.

Latent Constructs Observed Variables Relative Weight

OSR

OSR1 0.250
OSR2 0.261
OSR3 0.244
OSR4 0.246

TI
TI1 0.324
TI2 0.337
TI3 0.339

DPSC
DPSC1 0.319
DPSC2 0.337
DPSC3 0.343

KEC
KEC1 0.344
KEC2 0.328
KEC3 0.328

FC
FC1 0.353
FC2 0.334
FC3 0.313

MEF

MEF1 0.253
MEF2 0.232
MEF3 0.274
MEF4 0.242

5. Discussion

Examining the relative importance weights from the SEM analysis conveys a profound
understanding of the intricate correlation among KSFs and their pertinent parameters in
driving the successful deployment of BIM-DT technology within the sustainable construc-
tion industry. The relative importance weights represent a quantitative indicator of each
KSF impact within its respective parameters. The values of these weights reflect how a
particular success factor contributes to overall readiness for BIM-DT adoption. A higher
weight signifies a more substantial impact and highlights the essence of the corresponding
factor in achieving successful implementation. This section thoroughly compares these
weights, provides justification and grounds for the observed results, and offers insights
into their practical implications for the BIM-DT readiness assessment model.

Concerning the sustainable parameters, the relative importance weights for sustain-
able parameters convey the fundamental significance of sustainability considerations in
BIM-DT adoption. The relatively high weight of cost optimization (0.183) aligns with
industry trends, where reducing costs via improved efficiency and resource management
is a critical intention. The substantial weight of resource management (0.171) underlines
the industry’s emphasis on resource utilization and environmental control. The steady
allotment of weights for other factors, including energy efficiency (0.166), predictive main-
tenance (0.169), occupant comfort and well-being (0.153), and stakeholder engagement
(0.157), renders a holistic approach required to attain sustainability goals while ensuring
stakeholder satisfaction.

With respect to organizational support and readiness, the significant weight of readi-
ness of the organization to adopt the technology (0.261) plays a pivotal role in organizational
preparedness for successful BIM-DT adoption in sustainable construction. Organizations
must line up their strategies, processes, and structures to endure the evolutionary nature
of technology. The weight of support of top management (0.250) further indicates that
leadership endorsement is essential in supporting a culture of innovation and change.
The close configuration of weights for the readiness of personnel to change and adopt
new technology (0.244) and stakeholders’ awareness of technology benefits (0.246) shows
the interrelation between workforce readiness and stakeholder engagement in driving
technology acceptance.
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In terms of technological infrastructure, the weights assigned to technological in-
frastructure factors indicate the need to construct a robust technological foundation for
successful BIM-DT adoption. The weights of availability of skilled individuals to operate
the technology platform (0.337) and availability of technology operators (0.339) underline
the crucial role of human expertise in efficiently harnessing the potential of the technology.
The weight of availability of technological infrastructure (0.324) reinforces the importance
of an incorporated and seamless technological ecosystem to foster the deployment and
operation of BIM-DT.

Furthermore, regarding data privacy, security, and compliance, the equivalent al-
location of weights for data privacy, security, and compliance parameters stresses the
intricate balance in addressing these critical concerns. The weight of assurance of data pri-
vacy and security (0.319) emphasizes safeguarding sensitive information and maintaining
trust. The similar weights for availability of clear project documentation and requirements
(0.337) and availability of standards and codes for the new technology (0.343) underline
the paramount of explicit guidelines and managerial frameworks in ensuring ethical and
compliant deployment.

Regarding knowledge, expertise, and competencies, the relative importance weights
for knowledge, expertise, and competencies factors contemplate the requisite for contin-
uous learning and development in adopting transformative technologies. The weight of
the availability of knowledge, skills, and competencies to adopt the technology (0.344)
highlights the centrality of workforce upskilling in navigating the complexities of BIM-DT.
Furthermore, the balanced weights of availability of practical cases of the technology (0.328)
and the continuity of research and development efforts to enhance the adaptability of the
technology (0.328) underline the cooperative correlation between practical implementation
and ongoing innovation.

Concerning financial considerations, the weight of availability of funds and financial
investment (0.353) signifies the resource-intensive nature of BIM-DT adoption. Substantial
financial commitment is important for procuring technology, training, and infrastructure
upgrades. Additionally, the close weights of affordability of software and hardware upgrad-
ing and maintenance cost (0.334) and availability of governmental support, initiatives, and
tendering law (0.313) highlight the binary dimensions of cost-effectiveness and supportive
policy frameworks in modeling financial considerations.

Moreover, regarding the market and external factors, the fluctuating weights for mar-
ket and external factors render perceptions into the external dynamics impacting BIM-DT
adoption in sustainable construction. The weight of managing the industry resistance
to adopt the new technology (0.274) underscores the challenges of steering cultural and
resistance hurdles within the industry. Additionally, the weight of market demand for
the technology (0.253) underlines the portrayal of market forces driving BIM-DT adop-
tion decisions. The comparable weights for insurance of coordination and collaboration
between project parties (0.232) and availability of key performance indicators (KPIs) to
track the progress (0.242) accentuate the significance of collaborative initiatives and perfor-
mance measurement.

In summary, comparing the relative importance weights underscores the interrelation
between key success factors and their relevant sustainable parameters. These heeded
patterns mirror the holistic nature of BIM-DT adoption in sustainable construction, in
which success pivots on a balance between technological readiness, organizational support,
regulatory compliance, and market dynamics. The varying weights across the key success
factors highlight the importance of a multidimensional and adaptive approach to the
BIM-DT readiness framework.

The insights from comparing relative importance weights engender a robust founda-
tion for informed decision-making and strategic planning. Decision-makers can leverage
these insights to allot resources, prioritize interventions, and design strategies that holisti-
cally tackle the adaptable challenges and opportunities of BIM-DT adoption in sustainable
construction. By understanding the correlation between key success factors and their
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associated sustainable parameters, stakeholders can navigate intricacies more productively
and improve the probability of successful implementation.

While the present research conveys valuable insights, it is essential to recognize that
relative importance weights may differ across contexts, industries, and regions. Future
research could investigate the stability and transferability of these weights concerning
distinctive organizational and environmental factors. The qualitative context underlying
these quantitative weights can provide profound insights into the complex dynamics of
BIM-DT adoption in sustainable construction.

6. Conclusions and Implications

Construction sustainability can contribute to the United Nations’ sustainable devel-
opment goals (SDGs) by adopting construction and asset management technologies. The
convergence of digital transformation and construction informatics plays a pivotal role in
realizing sustainability in the construction industry. While Building Information Modeling
(BIM) is a foundational tool, the broader implementation of digital twins (DT), especially
in developing nations such as Egypt and the Gulf countries, remains limited. This study
aimed to investigate and assess the adoption of BIM-DT and its impact on construction
sustainability. Employing a theoretical framework, this study explored the interconnection
between BIM-DT to achieve sustainable construction. A combination of a questionnaire
survey and structural equation modelling (SEM) was employed to gather and analyze
BIM-DT drivers.

This study thoroughly examined the influence of BIM-DT on construction sustainabil-
ity, revealing significant factors such as organizational support, technological infrastructure,
data privacy, competency availability, financial considerations, market orientation, and
external influences. Financial factors, such as the availability of funds and market dynamics,
and industry resistance and demand, significantly impact successful implementation. Ro-
bust technological infrastructure and data privacy are pivotal, as indicated by the weights
assigned to factors such as skilled individuals, availability of technology operators, and
data privacy assurance. Organizational support and readiness have emerged as crucial,
with significant weights for readiness, top management support, and personnel readiness,
emphasizing the necessity of aligning strategies and embracing innovation.

Analyzing relative importance weights through SEM provides a profound understand-
ing of the intricate interplay between key success factors and their respective parameters,
facilitating the successful integration of BIM-DT technology within sustainable construction.
Insights from relative importance weights provide a robust foundation for decision-makers
to allocate resources, prioritize interventions, and develop strategies that effectively address
challenges and opportunities.

This study contributes to the existing body of knowledge by providing a comprehen-
sive assessment of BIM-DT adoption and its relationship to total construction sustainability.
The findings of this research will not only enhance our understanding of the technological
implications associated with these projects, but also provide practical insights for project
managers, policymakers, and other stakeholders involved in the planning and execution of
construction sustainability. This approach represents a novel and innovative effort to estab-
lish a more robust methodology that can guide business decisions based on investigating
the relationship between BIM-DT success factors and their relation to project sustainability.
Consequently, the findings of this study hold practical value for engineers, researchers, and
top-level managers.

Although the primary objectives of the research were substantially fulfilled, it is
crucial to acknowledge the potential limitations that should be addressed to enhance and
broaden the scope of the study and unearth novel initiatives for future research. The
present study, focusing on BIM-DT adoption in developing nations such as Egypt and
Gulf countries, could potentially overlook cross-cultural variations in adoption dynamics.
These multiple cultural contexts might exert varying impacts on readiness factors, which
are pivotal to successfully implementing BIM-DT. Furthermore, although the sample



Buildings 2024, 14, 268 21 of 26

size employed in this study was adequate for developing and applying the SEM model,
augmenting the dataset with responses from a more diverse and broader participant base
could bolster the fit, reliability, and validity of the model. Such expansion would enable a
more comprehensive understanding of BIM-DT adoption across different geographical and
cultural landscapes.

The present study offers significant strides in understanding BIM-DT adoption for
sustainable construction, particularly in developing countries. However, the authors
acknowledge that the BIM-DT adoption assessment’s comprehensiveness and broader
applicability of the results may require further substantiation. For instance, while the
portrayed findings reveal key factors, such as organizational support, technological in-
frastructure, and financial considerations impacting BIM-DT adoption, these factors may
vary in significance and manifestation across different regions and construction contexts.
Therefore, research contributions should be exhibited as an exploratory step in a more
significant research trajectory aimed at unraveling the multifaceted nature of BIM-DT
adoption and its implications for sustainable construction worldwide.

To address the limitations identified in this study, future research directions can be
broadened to encompass a comparative examination of distinct regions, countries, or indus-
tries to appraise variations in BIM-DT readiness factors and enhance the generalizability of
the findings. Additionally, addressing external validity concerns by conducting field exper-
iments or case studies in real-world construction projects is essential to validate the model’s
conclusions and gauge its practical applicability. Moreover, it is imperative to include more
specific and measurable sustainability metrics to examine the impact of BIM-DT adoption
on sustainability performance in construction projects, thereby providing a more nuanced
understanding of its benefits and challenges. By grounding our findings in the realities of
construction projects and their unique challenges, we can contribute substantially to the
field, offering actionable guidance to practitioners and policymakers.

Author Contributions: Conceptualization, A.A.A. and A.E.; Data curation, A.H.A. and H.H.E.;
Formal analysis, A.G.M.; Funding acquisition, A.A.A.; Investigation, A.A.A., A.H.A. and A.E.;
Methodology, A.H.A., A.E. and A.G.M.; Project administration, A.A.A. and A.E.; Resources, H.H.E.;
Software, A.G.M.; Supervision, A.A.A. and A.E.; Validation, A.G.M.; Visualization, H.H.E.; Writing—
original draft, A.A.A., A.H.A., H.H.E., A.E. and A.G.M.; Writing—review & editing, A.A.A., A.E. and
A.G.M. All authors have read and agreed to the published version of the manuscript.

Funding: The authors extend their appreciation to the Deputyship for Research and Innovation,
“Ministry of Education” in Saudi Arabia, for funding this research (IFKSUOR3-054-2).

Data Availability Statement: Some or all data, models, or codes that support the findings of this
study are available from the corresponding author upon reasonable request.

Conflicts of Interest: Author Haytham H. Elmousalami was employed by the company General
Petroleum Company (GPC). The remaining authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a potential conflict
of interest.

Nomenclature
Abbreviations Term Meaning
AMOS Analysis of Moment Structure
AVE Average Variance Extracted
BIM Building Information Modelling
CFA Confirmatory Factor Analysis
CR Composite Reliability
DT Digital Twin
IoTs Internet of Things
KSFs Key Success Factors
KSF-SP Key Success Factors—Sustainable Parameters
SDGs Sustainable Development Goals
SEM Structural Equation Modeling



Buildings 2024, 14, 268 22 of 26

References
1. Dalampira, E.; Nastis, S.A. Mapping Sustainable Development Goals: A network analysis framework. Sustain. Dev. 2019, 28,

46–55. [CrossRef]
2. Lyytimäki, J.; Salo, H.; Lepenies, R.; Büttner, L.; Mustajoki, J. Risks of producing and using indicators of sustainable development

goals. Sustain. Dev. 2020, 28, 1528–1538. [CrossRef]
3. Udomsap, A.D.; Hallinger, P. A bibliometric review of research on sustainable construction, 1994–2018. J. Clean. Prod. 2020, 254,

120073. [CrossRef]
4. Avrampou, A.; Skouloudis, A.; Iliopoulos, G.; Khan, N. Advancing the Sustainable Development Goals: Evidence from leading

European banks. Sustain. Dev. 2019, 27, 743–757. [CrossRef]
5. Elmousalami, H.H. Comparison of artificial intelligence techniques for project conceptual cost prediction: A case study and

comparative analysis. IEEE Trans. Eng. Manag. 2020, 68, 183–196.
6. Hammam, A.A.; Elmousalami, H.H.; Hassanien, A.E. Stacking deep learning for early COVID-19 vision diagnosis. In Big Data

Analytics and Artificial Intelligence Against COVID-19: Innovation Vision and Approach; Springer: Berlin/Heidelberg, Germany, 2020;
pp. 297–307.

7. Maskuriy, R.; Selamat, A.; Maresova, P.; Krejcar, O.; David, O.O. Industry 4.0 for the construction industry: Review of management
perspective. Economies 2019, 7, 68.

8. Elmousalami, H.H. Artificial Intelligence and Parametric Construction Cost Estimate Modeling: State-of-the-Art Review. J. Constr.
Eng. Manag. 2020, 146, 03119008. [CrossRef]

9. Porthin, M.; Liinasuo, M.; Kling, T. Effects of digitalization of nuclear power plant control rooms on human reliability analysis—A
review. Reliab. Eng. Syst. Saf. 2020, 194, 106415. [CrossRef]

10. ElMousalami, H.H.; Elyamany, A.H.; Ibrahim, A.H. Predicting Conceptual Cost for Field Canal Improvement Projects. J. Constr.
Eng. Manag. 2018, 144, 1–8. [CrossRef]

11. Lu, Q.; Xie, X.; Heaton, J.; Parlikad, A.K.; Schooling, J. From BIM towards digital twin: Strategy and future development for smart
asset management. In Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future, Proceedings of the
SOHOMA 2019, Valencia, Spain, 3–4 October 2019; Springer: Berlin/Heidelberg, Germany, 2020; pp. 392–404.

12. Sepasgozar, S.M.E. Differentiating Digital Twin from Digital Shadow: Elucidating a Paradigm Shift to Expedite a Smart,
Sustainable Built Environment. Buildings 2021, 11, 151.

13. Ariono, B.; Wasesa, M.; Dhewanto, W. The Drivers, Barriers, and Enablers of Building Information Modeling (BIM) Innovation in
Developing Countries: Insights from Systematic Literature Review and Comparative Analysis. Buildings 2022, 12, 1912. [CrossRef]

14. Aftab, U.; Jaleel, F.; Mansoor, R.; Haroon, M.; Aslam, M. Obstructions in BIM Implementation for Developing Countries—A
Mini-Review. Eng. Proc. 2023, 45, 26. [CrossRef]

15. Nour El-Din, M.; Pereira, P.F.; Poças Martins, J.; Ramos, N.M.M. Digital Twins for Construction Assets Using BIM Standard
Specifications. Buildings 2022, 12, 2155. [CrossRef]

16. Van Tam, N.; Diep, T.N.; Toan, N.Q.; Quy, N.L.D. Factors affecting adoption of building information modeling in construction
projects: A case of Vietnam. Cogent Bus. Manag. 2021, 8, 1918848. [CrossRef]

17. Torrecilla-García, J.A.; Pardo-Ferreira, M.C.; Rubio-Romero, J.C. Overall Introduction to the Framework of BIM-based Digital
Twinning in Decision-making in Safety Management in Building Construction Industry. Dir. Organ. 2022, 76, 5–12. [CrossRef]

18. Baghalzadeh Shishehgarkhaneh, M.; Keivani, A.; Moehler, R.C.; Jelodari, N.; Roshdi Laleh, S. Internet of Things (IoT), Building
Information Modeling (BIM), and Digital Twin (DT) in Construction Industry: A Review, Bibliometric, and Network Analysis.
Buildings 2022, 12, 1503. [CrossRef]

19. Huynh, D.; Nguyen-Ky, S. Engaging Building Automation Data Visualisation Using Building Information Modelling and
Progressive Web Application. Open Eng. 2020, 10, 434–442. [CrossRef]

20. Martínez-Olvera, C. Towards the Development of a Digital Twin for a Sustainable Mass Customization 4.0 Environment: A
Literature Review of Relevant Concepts. Automation 2022, 3, 197–222. [CrossRef]

21. Abdel-Tawab, M.; Kineber, A.F.; Chileshe, N.; Abanda, H.; Ali, A.H.; Almukhtar, A. Building Information Modelling Implemen-
tation Model for Sustainable Building Projects in Developing Countries: A PLS-SEM Approach. Sustainability 2023, 15, 9242.
[CrossRef]

22. Bosch-Sijtsema, P.; Claeson-Jonsson, C.; Johansson, M.; Roupe, M. The hype factor of digital technologies in AEC. Constr. Innov.
2021, 21, 899–916. [CrossRef]

23. Darko, A.; Chan, A.P.C.; Yang, Y.; Tetteh, M.O. Building information modeling (BIM)-based modular integrated construction risk
management—Critical survey and future needs. Comput. Ind. 2020, 123, 103327. [CrossRef]

24. Wang, W.; Guo, H.; Li, X.; Tang, S.; Li, Y.; Xie, L.; Lv, Z. BIM Information Integration Based VR Modeling in Digital Twins in
Industry 5.0. J. Ind. Inf. Integr. 2022, 28, 100351. [CrossRef]

25. Wagner, R.; Kabalska, A. Sustainable value in the fashion industry: A case study of value construction/destruction using digital
twins. Sustain. Dev. 2022, 31, 1652–1667. [CrossRef]

26. Sepasgozar, S.M.E.; Khan, A.A.; Smith, K.; Romero, J.G.; Shen, X.; Shirowzhan, S.; Li, H.; Tahmasebinia, F. BIM and Digital Twin
for Developing Convergence Technologies as Future of Digital Construction. Buildings 2023, 13, 441. [CrossRef]

27. Tzachor, A.; Sabri, S.; Richards, C.E.; Rajabifard, A.; Acuto, M. Potential and limitations of digital twins to achieve the Sustainable
Development Goals. Nat. Sustain. 2022, 5, 822–829. [CrossRef]

https://doi.org/10.1002/sd.1964
https://doi.org/10.1002/sd.2102
https://doi.org/10.1016/j.jclepro.2020.120073
https://doi.org/10.1002/sd.1938
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001678
https://doi.org/10.1016/j.ress.2019.03.022
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001561
https://doi.org/10.3390/buildings12111912
https://doi.org/10.3390/engproc2023045026
https://doi.org/10.3390/buildings12122155
https://doi.org/10.1080/23311975.2021.1918848
https://doi.org/10.37610/dyo.v0i74.600
https://doi.org/10.3390/buildings12101503
https://doi.org/10.1515/eng-2020-0054
https://doi.org/10.3390/automation3010010
https://doi.org/10.3390/su15129242
https://doi.org/10.1108/CI-01-2020-0002
https://doi.org/10.1016/j.compind.2020.103327
https://doi.org/10.1016/j.jii.2022.100351
https://doi.org/10.1002/sd.2474
https://doi.org/10.3390/buildings13020441
https://doi.org/10.1038/s41893-022-00923-7


Buildings 2024, 14, 268 23 of 26

28. Yildiz, E.; Møller, C.; Bilberg, A. Virtual factory: Digital twin based integrated factory simulations. Procedia CIRP 2020, 93, 216–221.
[CrossRef]

29. Sacks, R.; Eastman, C.; Lee, G.; Teicholz, P. BIM Handbook: A Guide to Building Information Modeling for Owners, Designers, Engineers,
Contractors, and Facility Managers, 3rd ed.; Wiley: Hoboken, NJ, USA, 2018.

30. Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y.C. Digital Twin in Industry: State-of-the-Art. IEEE Trans. Ind. Inform. 2018, 15, 2405–2415.
[CrossRef]

31. Nguyen, T.D.; Adhikari, S. The Role of BIM in Integrating Digital Twin in Building Construction: A Literature Review. Sustainabil-
ity 2023, 15, 10462. [CrossRef]

32. Pan, Y.; Zhang, L. A BIM-data mining integrated digital twin framework for advanced project management. Autom. Constr. 2021,
124, 103564. [CrossRef]

33. Tuhaise, V.V.; Tah, J.H.M.; Abanda, F.H. Technologies for digital twin applications in construction. Autom. Constr. 2023, 152,
104931. [CrossRef]

34. Fernández-Mora, V.; Navarro, I.J.; Yepes, V. Integration of the structural project into the BIM paradigm: A literature review. J.
Build. Eng. 2022, 53, 104318. [CrossRef]

35. Xu, L.; de Vrieze, P.; Lu, X.; Wang, W. Digital Twins Approach for Sustainable Industry. In Advanced Information Systems Engineering
Workshops, Proceedings of the CAiSE 2022 International Workshops, Leuven, Belgium, 6–10 June 2022; Springer: Cham, Switzerland,
2022; pp. 126–134. [CrossRef]

36. Opoku, D.-G.J.; Perera, S.; Osei-Kyei, R.; Rashidi, M. Digital twin application in the construction industry: A literature review. J.
Build. Eng. 2021, 40, 102726. [CrossRef]

37. Ammar, A.; Nassereddine, H.; AbdulBaky, N.; AbouKansour, A.; Tannoury, J.; Urban, H.; Schranz, C. Digital Twins in the
Construction Industry: A Perspective of Practitioners and Building Authority. Front. Built Environ. 2022, 8, 834671. [CrossRef]

38. Desogus, G.; Quaquero, E.; Rubiu, G.; Gatto, G.; Perra, C. Bim and iot sensors integration: A framework for consumption and
indoor conditions data monitoring of existing buildings. Sustainability 2021, 13, 4496. [CrossRef]

39. Opoku, D.-G.J.; Perera, S.; Osei-Kyei, R.; Rashidi, M.; Famakinwa, T.; Bamdad, K. Drivers for Digital Twin Adoption in the
Construction Industry: A Systematic Literature Review. Buildings 2022, 12, 113. [CrossRef]

40. Xing, K.; Kim, K.P.; Ness, D. Cloud-BIM enabled cyber-physical data and service platforms for building component reuse.
Sustainability 2020, 12, 10329. [CrossRef]

41. Lu, Q.; Xie, X.; Parlikad, A.K.; Schooling, J.M. Digital twin-enabled anomaly detection for built asset monitoring in operation and
maintenance. Autom. Constr. 2020, 118, 103277. [CrossRef]

42. Ozturk, G.B. Ozturk, Digital Twin Research in the AECO-FM Industry. J. Build. Eng. 2021, 40, 102730. [CrossRef]
43. Eastman, C.; Liston, K. BIM Handbook 2008; Sacks, R., Eastman, C., Lee, G., Teicholz, P., Eds.; Wiley: Hoboken, NJ, USA, 2008.
44. Eastman, C.; Liston, K. BIM Handbook 2011; Sacks, R., Eastman, C., Lee, G., Teicholz, P., Eds.; Wiley: Hoboken, NJ, USA, 2011.
45. Azhar, S. Role of Visualization Technologies in Safety Planning and Management at Construction Jobsites. Procedia Eng. 2017, 171,

215–226. [CrossRef]
46. Bryde, D.; Broquetas, M.; Volm, J.M. The project benefits of building information modelling (BIM). Int. J. Proj. Manag. 2013, 31,

971–980. [CrossRef]
47. He, B.; Bai, K.-J. Digital twin-based sustainable intelligent manufacturing: A review. Adv. Manuf. 2020, 9, 1–21. [CrossRef]
48. Corrado, C.R.; DeLong, S.M.; Holt, E.G.; Hua, E.Y.; Tolk, A. Combining Green Metrics and Digital Twins for Sustainability

Planning and Governance of Smart Buildings and Cities. Sustainability 2022, 14, 12988. [CrossRef]
49. Pfoser, S.; Treiblmaier, H.; Schauer, O. Critical Success Factors of Synchromodality: Results from a Case Study and Literature

Review. Transp. Res. Procedia 2016, 14, 1463–1471. [CrossRef]
50. Giusti, R.; Manerba, D.; Bruno, G.; Tadei, R. Synchromodal logistics: An overview of critical success factors, enabling technologies,

and open research issues. Transp. Res. Part E Logist. Transp. Rev. 2019, 129, 92–110. [CrossRef]
51. Zhang, R.; Tang, Y.; Wang, L.; Wang, Z. Factors influencing BIM adoption for construction enterprises in China. Adv. Civ. Eng.

2020, 2020, 8848965. [CrossRef]
52. Sepasgozar, S.M.E.; Hui, F.K.P.; Shirowzhan, S.; Foroozanfar, M.; Yang, L.; Aye, L. Lean Practices Using Building Information

Modeling (BIM) and Digital Twinning for Sustainable Construction. Sustainability 2021, 13, 161.
53. Liu, Z.; Lu, Y.; Nath, T.; Wang, Q.; Tiong, R.L.K.; Peh, L.L.C. Critical success factors for BIM adoption during construction phase:

A Singapore case study. Eng. Constr. Archit. Manag. 2021, 29, 3267–3287. [CrossRef]
54. Choi, J.O.; Chen, X.B.; Kim, T.W. Opportunities and challenges of modular methods in dense urban environment. Int. J. Constr.

Manag. 2017, 19, 93–105. [CrossRef]
55. Ali, A.H.; El-Mahdy, G.M.; Ibrahim, A.H.; Daoud, A.O. Towards the Adoption of Modular Construction in Residential Projects in

Egypt: Benefits, Barriers, and Enablers. In Towards a Sustainable Construction Industry: The Role of Innovation and Digitalisation,
Proceedings of the 12th Construction Industry Development Board (CIDB) Postgraduate Research Conference, East London, South Africa,
10–12 July 2022; Springer: Cham, Switzerland, 2023; Volume 1, pp. 72–81. [CrossRef]

56. Isaksen, S.G.; Gaulin, J.P. A reexamination of brainstorming research: Implications for research and practice. Gift. Child Q. 2005,
49, 315–329. [CrossRef]

57. AlMutairi, A.N.M. The Effect of Using Brainstorming Strategy in Developing Creative Problem Solving Skills among male
Students in Kuwait: A Field Study on Saud Al Kharji School in Kuwait City. J. Educ. Pract. 2015, 6, 136–145.

https://doi.org/10.1016/j.procir.2020.04.043
https://doi.org/10.1109/TII.2018.2873186
https://doi.org/10.3390/su151310462
https://doi.org/10.1016/j.autcon.2021.103564
https://doi.org/10.1016/j.autcon.2023.104931
https://doi.org/10.1016/j.jobe.2022.104318
https://doi.org/10.1007/978-3-031-07478-3_11
https://doi.org/10.1016/j.jobe.2021.102726
https://doi.org/10.3389/fbuil.2022.834671
https://doi.org/10.3390/su13084496
https://doi.org/10.3390/buildings12020113
https://doi.org/10.3390/su122410329
https://doi.org/10.1016/j.autcon.2020.103277
https://doi.org/10.1016/j.jobe.2021.102730
https://doi.org/10.1016/j.proeng.2017.01.329
https://doi.org/10.1016/j.ijproman.2012.12.001
https://doi.org/10.1007/s40436-020-00302-5
https://doi.org/10.3390/su142012988
https://doi.org/10.1016/j.trpro.2016.05.220
https://doi.org/10.1016/j.tre.2019.07.009
https://doi.org/10.1155/2020/8848965
https://doi.org/10.1108/ECAM-12-2020-1072
https://doi.org/10.1080/15623599.2017.1382093
https://doi.org/10.1007/978-3-031-22434-8_8
https://doi.org/10.1177/001698620504900405


Buildings 2024, 14, 268 24 of 26

58. Abbasnejad, B.; Nepal, M.P.; Ahankoob, A.; Nasirian, A.; Drogemuller, R. Building Information Modelling (BIM) adoption and
implementation enablers in AEC firms: A systematic literature review. Archit. Eng. Des. Manag. 2020, 17, 411–433. [CrossRef]

59. Dowsett, R.M.; Harty, C.F. Assessing the implementation of BIM–an information systems approach. Constr. Manag. Econ. 2018, 37,
551–566. [CrossRef]

60. Liao, L.; Teo, E.A.L. Organizational Change Perspective on People Management in BIM Implementation in Building Projects. J.
Manag. Eng. 2018, 34, 04018008. [CrossRef]

61. Deepu, T.S.; Ravi, V. Exploring critical success factors influencing adoption of digital twin and physical internet in electronics
industry using grey-DEMATEL approach. Digit. Bus. 2021, 1, 100009. [CrossRef]

62. Shehzad, H.M.F.; Ibrahim, R.B.; Yusof, A.F.; Khaidzir, K.A.M. Building Information Modeling: Factors Affecting the Adoption in
the AEC Industry. In Proceedings of the 2019 6th International Conference on Research and Innovation in Information Systems
(ICRIIS), Johor Bahru, Malaysia, 2–3 December 2019; pp. 20–25.

63. Qin, X.; Shi, Y.; Lyu, K.; Mo, Y. Using a tam-toe model to explore factors of building information modelling (Bim) adoption in the
construction industry. J. Civ. Eng. Manag. 2020, 26, 259–277. [CrossRef]

64. Chan, D.W.M.; Olawumi, T.O.; Ho, A.M.L. Critical success factors for building information modelling (BIM) implementation in
Hong Kong. Eng. Constr. Archit. Manag. 2019, 26, 1838–1854. [CrossRef]

65. Attarzadeh, M.; Nath, T.; Tiong, R.L.K. Identifying key factors for building information modelling adoption in Singapore. Proc.
Inst. Civ. Eng. Manag. Procure. Law 2015, 168, 220–231. [CrossRef]

66. Al-Mohammad, M.S.; Haron, A.T.; Rahman, R.A.; Alhammadi, Y. Factors affecting BIM implementation in Saudi Arabia: A
critical analysis. Int. J. Build. Pathol. Adapt. 2022; ahead-of-print. [CrossRef]

67. Waqar, A.; Othman, I.; Almujibah, H.; Khan, M.B.; Alotaibi, S.; Elhassan, A.A.M. Factors Influencing Adoption of Digital Twin
Advanced Technologies for Smart City Development: Evidence from Malaysia. Buildings 2023, 13, 775. [CrossRef]

68. Abubakar, M.; Ibrahim, Y.M.; Kado, D.; Bala, K. Contractors’ Perception of the Factors Affecting Building Information Modelling
(BIM) Adoption in the Nigerian Construction Industry. In Proceedings of the 2014 International Conference on Computing in
Civil and Building Engineering, Orlando, FL, USA, 23–25 June 2014; pp. 955–1865. [CrossRef]

69. Ngowtanasuwan, G.; Hadikusumo, B.H.W. System dynamics modelling for BIM adoption in Thai architectural and engineering
design industry. Constr. Innov. 2017, 17, 457–474. [CrossRef]

70. Mashaly, M. Connecting the twins: A review on digital twin technology & its networking requirements. Procedia Comput. Sci.
2021, 184, 299–305. [CrossRef]

71. Turner, C.J.; Oyekan, J.; Stergioulas, L.; Griffin, D. Utilizing Industry 4.0 on the Construction Site: Challenges and Opportunities.
IEEE Trans. Ind. Inform. 2021, 17, 746–756. [CrossRef]

72. Ahuja, R.; Sawhney, A.; Jain, M.; Arif, M.; Rakshit, S. Factors influencing BIM adoption in emerging markets—The case of India.
Int. J. Constr. Manag. 2020, 20, 65–76. [CrossRef]

73. Olawumi, T.O.; Chan, D.W.M. Critical success factors for implementing building information modeling and sustainability
practices in construction projects: A Delphi survey. Sustain. Dev. 2019, 27, 587–602. [CrossRef]

74. Agnusdei, G.P.; Elia, V.; Gnoni, M.G. Is Digital Twin Technology Supporting Safety Management? A Bibliometric and Systematic
Review. Appl. Sci. 2021, 11, 2767. [CrossRef]

75. Kouhizadeh, M.; Saberi, S.; Sarkis, J. Blockchain technology and the sustainable supply chain: Theoretically exploring adoption
barriers. Int. J. Prod. Econ. 2020, 231, 107831. [CrossRef]

76. Kim, S.; Park, C.H.; Chin, S. Assessment of BIM acceptance degree of Korean AEC participants. KSCE J. Civ. Eng. 2016, 20,
1163–1177. [CrossRef]

77. Al-Mohammad, M.S.; Haron, A.T.; Aloko, M.N.; Rahman, R.A. Factors affecting BIM implementation in post-conflict low-income
economies: The case of Afghanistan. J. Eng. Des. Technol. 2021, 21, 299–318. [CrossRef]

78. Al-Yami, A.; Sanni-Anibire, M.O. BIM in the Saudi Arabian construction industry: State of the art, benefit and barriers. Int. J.
Build. Pathol. Adapt. 2021, 39, 33–47. [CrossRef]

79. Hong, Y.; Hammad, A.W.; Sepasgozar, S.; Akbarnezhad, A. BIM adoption model for small and medium construction organisations
in Australia. Eng. Constr. Archit. Manag. 2019, 26, 154–183. [CrossRef]

80. Siebelink, S.; Voordijk, J.T.; Adriaanse, A. Developing and Testing a Tool to Evaluate BIM Maturity: Sectoral Analysis in the Dutch
Construction Industry. J. Constr. Eng. Manag. 2018, 144, 05018007. [CrossRef]

81. Wang, G.; Liu, Z.; Wang, H. Key factors affecting BIM adoption is China based on TOE&RC. In Proceedings of the 2016 Inter-
national Conference on Mechanics, Materials and Structural Engineering, Jeju Island, Republic of Korea, 18–20 March 2016;
pp. 103–108. [CrossRef]

82. Deng, M.; Menassa, C.C.; Kamat, V.R. From BIM to digital twins: A systematic review of the evolution of intelligent building
representations in the AEC-FM industry. J. Inf. Technol. Constr. 2021, 26, 58–83. [CrossRef]

83. Huang, J.; Yang, W.; Tu, Y. Financing mode decision in a supply chain with financial constraint. Int. J. Prod. Econ. 2020, 220,
107441. [CrossRef]

84. Gupta, H.; Kusi-Sarpong, S.; Rezaei, J. Barriers and overcoming strategies to supply chain sustainability innovation. Resour.
Conserv. Recycl. 2020, 161, 104819. [CrossRef]

85. Singh, C.; Sharma, N.; Kumar, N. Analysis of software maintenance cost affecting factors and estimation models. Int. J. Sci.
Technol. Res. 2019, 8, 276–281.

https://doi.org/10.1080/17452007.2020.1793721
https://doi.org/10.1080/01446193.2018.1476728
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000604
https://doi.org/10.1016/j.digbus.2021.100009
https://doi.org/10.3846/jcem.2020.12176
https://doi.org/10.1108/ECAM-05-2018-0204
https://doi.org/10.1680/jmapl.2015.15.00030
https://doi.org/10.1108/IJBPA-09-2021-0122
https://doi.org/10.3390/buildings13030775
https://doi.org/10.1061/9780784413616.022
https://doi.org/10.1108/CI-03-2016-0018
https://doi.org/10.1016/j.procs.2021.03.039
https://doi.org/10.1109/TII.2020.3002197
https://doi.org/10.1080/15623599.2018.1462445
https://doi.org/10.1002/sd.1925
https://doi.org/10.3390/app11062767
https://doi.org/10.1016/j.ijpe.2020.107831
https://doi.org/10.1007/s12205-015-0647-y
https://doi.org/10.1108/JEDT-04-2021-0205
https://doi.org/10.1108/IJBPA-08-2018-0065
https://doi.org/10.1108/ECAM-04-2017-0064
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001527
https://doi.org/10.2991/icmmse-16.2016.40
https://doi.org/10.36680/J.ITCON.2021.005
https://doi.org/10.1016/j.ijpe.2019.07.014
https://doi.org/10.1016/j.resconrec.2020.104819


Buildings 2024, 14, 268 25 of 26

86. Nath, T.; Attarzadeh, M.; Tiong, R.L.K.; Chidambaram, C.; Yu, Z. Productivity improvement of precast shop drawings generation
through BIM-based process re-engineering. Autom. Constr. 2015, 54, 54–68. [CrossRef]

87. Mohammad, W.N.S.W.; Abdullah, M.R.; Ismail, S.; Takim, R. Overview of Building Information Modelling (BIM) adoption factors
for construction organisations. IOP Conf. Ser. Earth Environ. Sci. 2018, 140, 012107. [CrossRef]

88. Tai, S.; Zhang, Y.; Li, T. Factors affecting BIM application in China: A social network model. J. Eng. Des. Technol. 2020, 19, 373–384.
[CrossRef]

89. Sodangi, M.; Salman, A.F.; Saleem, M. Building Information Modeling: Awareness Across the Subcontracting Sector of Saudi
Arabian Construction Industry. Arab. J. Sci. Eng. 2018, 43, 1807–1816. [CrossRef]

90. Cao, D.; Li, H.; Wang, G.; Luo, X.; Tan, D. Relationship Network Structure and Organizational Competitiveness: Evidence from
BIM Implementation Practices in the Construction Industry. J. Manag. Eng. 2018, 34, 04018005. [CrossRef]

91. Hosseini, M.R.; Pärn, E.A.; Edwards, D.J.; Papadonikolaki, E.; Oraee, M. Roadmap to Mature BIM Use in Australian SMEs:
Competitive Dynamics Perspective. J. Manag. Eng. 2018, 34, 05018008. [CrossRef]

92. Papadonikolaki, E.; Verbraeck, A.; Wamelink, H. Formal and informal relations within BIM-enabled supply chain partnerships.
Constr. Manag. Econ. 2017, 35, 531–552. [CrossRef]

93. Kaewunruen, S.; Xu, N. Digital Twin for Sustainability Evaluation of Railway Station Buildings. Front. Built Environ. 2018, 4, 77.
[CrossRef]

94. Götz, C.S.; Karlsson, P.; Yitmen, I. Exploring applicability, interoperability and integrability of Blockchain-based digital twins for
asset life cycle management. Smart Sustain. Built Environ. 2020, 11, 532–558. [CrossRef]

95. Honghong, S.; Gang, Y.; Haijiang, L.; Tian, Z.; Annan, J. Digital twin enhanced BIM to shape full life cycle digital transformation
for bridge engineering. Autom. Constr. 2023, 147, 104736. [CrossRef]

96. Daniotti, B.; Masera, G.; Bolognesi, C.M.; Lupica Spagnolo, S.; Pavan, A.; Iannaccone, G.; Signorini, M.; Ciuffreda, S.; Mirarchi,
C.; Lucky, M.; et al. The Development of a BIM-Based Interoperable Toolkit for Efficient Renovation in Buildings: From BIM to
Digital Twin. Buildings 2022, 12, 231. [CrossRef]

97. Tagliabue, L.C.; Cecconi, F.R.; Maltese, S.; Rinaldi, S.; Ciribini, A.L.C.; Flammini, A. Leveraging digital twin for sustainability
assessment of an educational building. Sustainability 2021, 13, 480. [CrossRef]

98. Adibfar, A.; Costin, A.M. Creation of a Mock-up Bridge Digital Twin by Fusing Intelligent Transportation Systems (ITS) Data into
Bridge Information Model (BrIM). J. Constr. Eng. Manag. 2022, 148, 04022094. [CrossRef]

99. Ali, A.H.; Kineber, A.F.; Elyamany, A.; Ibrahim, A.H.; Daoud, A.O. Identifying and assessing modular construction implementa-
tion barriers in developing nations for sustainable building development. Sustain. Dev. 2023, 31, 3346–3364. [CrossRef]

100. Ali, A.H.; Kineber, A.F.; Elyamany, A.; Ibrahim, A.H.; Daoud, A.O. Modelling the role of modular construction’ s critical success
factors in the overall sustainable success of Egyptian housing projects. J. Build. Eng. 2023, 71, 106467. [CrossRef]

101. Saunders, M.N.K.; Lewis, P.; Thornhill, A. Research Methods for Business Students, 8th ed.; Pearson Education Limited: London,
UK, 2019.

102. Sargeant, J. Qualitative Research Part II: Participants, Analysis, and Quality Assurance. J. Grad. Med. Educ. 2012, 4, 1–3. [CrossRef]
[PubMed]

103. Leung, L. Validity, reliability, and generalizability in qualitative research. J. Fam. Med. Prim. Care 2015, 4, 324–327. [CrossRef]
104. Weise, A.; Büchter, R.; Pieper, D.; Mathes, T. Assessing context suitability (generalizability, external validity, applicability or

transferability) of findings in evidence syntheses in healthcare—An integrative review of methodological guidance. Res. Synth.
Methods 2020, 11, 760–779. [CrossRef] [PubMed]

105. Ali, A.H.; Kineber, A.F.; Elyamany, A.; Ibrahim, A.H.; Daoud, A.O. Exploring stationary and major modular construction
challenges in developing countries: A case study of Egypt. J. Eng. Des. Technol. 2023; ahead-of-print. [CrossRef]

106. Kineber, A.F.; Ali, A.H.; Elshaboury, N.; Emmanuel, A.; Arashpour, M. A multi-criteria evaluation and stationary analysis of
value management implementation barriers for sustainable residential building projects. Int. J. Constr. Manag. 2023, 2023, 2267870.
[CrossRef]

107. Noor, S.; Tajik, O.; Golzar, J. Simple Random Sampling. Int. J. Educ. Lang. Stud. 2022, 1, 78–82. [CrossRef]
108. Ali, A.H.; Kineber, A.F.; Qaralleh, T.J.O.; Alaboud, N.S.; Daoud, A.O. Classifying and evaluating enablers influencing modular

construction utilization in the construction sector: A fuzzy synthetic evaluation. Alex. Eng. J. 2023, 78, 45–55. [CrossRef]
109. Elmousalami, H.H.; Ali, A.H.; Kineber, A.F.; Elyamany, A. A novel conceptual cost estimation decision- making model for field

canal improvement projects. Int. J. Constr. Manag. 2023, 2023, 2271214. [CrossRef]
110. Valle, P.O.D.; Assaker, G. Using Partial Least Squares Structural Equation Modeling in Tourism Research: A Review of Past

Research and Recommendations for Future Applications. J. Travel Res. 2016, 55, 695–708. [CrossRef]
111. Al-Mekhlafi, A.-B.A.; Isha, A.S.N.; Chileshe, N.; Abdulrab, M.; Kineber, A.F.; Ajmal, M. Impact of safety culture implementation

on driving performance among oil and gas tanker drivers: A partial least squares structural equation modelling (pls-sem)
approach. Sustainability 2021, 13, 8886. [CrossRef]

112. Aksoy, F.; Arlı, N.B. Evaluation of sustainable happiness with Sustainable Development Goals: Structural equation model
approach. Sustain. Dev. 2019, 28, 385–392. [CrossRef]

113. Ismaeel, W.S.E.; Mohamed, A.G. A structural equation modelling paradigm for eco-rehabilitation and adaptive reuse of cultural
heritage buildings. Build. Environ. 2023, 242, 110604. [CrossRef]

https://doi.org/10.1016/j.autcon.2015.03.014
https://doi.org/10.1088/1755-1315/140/1/012107
https://doi.org/10.1108/JEDT-12-2019-0330
https://doi.org/10.1007/s13369-017-2756-z
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000600
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000636
https://doi.org/10.1080/01446193.2017.1311020
https://doi.org/10.3389/fbuil.2018.00077
https://doi.org/10.1108/SASBE-08-2020-0115
https://doi.org/10.1016/j.autcon.2022.104736
https://doi.org/10.3390/buildings12020231
https://doi.org/10.3390/su13020480
https://doi.org/10.1061/(ASCE)CO.1943-7862.0002332
https://doi.org/10.1002/sd.2589
https://doi.org/10.1016/j.jobe.2023.106467
https://doi.org/10.4300/jgme-d-11-00307.1
https://www.ncbi.nlm.nih.gov/pubmed/23451297
https://doi.org/10.4103/2249-4863.161306
https://doi.org/10.1002/jrsm.1453
https://www.ncbi.nlm.nih.gov/pubmed/32920989
https://doi.org/10.1108/JEDT-03-2023-0099
https://doi.org/10.1080/15623599.2023.2267870
https://doi.org/10.4135/9781412984683.n2
https://doi.org/10.1016/j.aej.2023.07.026
https://doi.org/10.1080/15623599.2023.2271214
https://doi.org/10.1177/0047287515569779
https://doi.org/10.3390/su13168886
https://doi.org/10.1002/sd.1985
https://doi.org/10.1016/j.buildenv.2023.110604


Buildings 2024, 14, 268 26 of 26

114. Zhao, L.; Wang, B.; Mbachu, J.; Liu, Z. New Zealand building project cost and its influential factors: A structural equation
modelling approach. Adv. Civ. Eng. 2019, 2019, 1362730. [CrossRef]

115. Mohamed, A.G.; Ammar, M.H.; Nabawy, M. Risks assessment using structural equation modeling: Mega housing projects
construction in Egypt. Int. J. Constr. Manag. 2022, 23, 2717–2728. [CrossRef]

116. Kline, R.B. Principles and Practice of Structural Equation Modeling, 5th ed.; Guilford Publications: New York, NY, USA, 2023.
117. Boomsma, A. Nonconvergence, improper solutions, and starting values in lisrel maximum likelihood estimation. Psychometrika

1985, 50, 229–242. [CrossRef]
118. Fan, Y.; Chen, J.; Shirkey, G.; John, R.; Wu, S.R.; Park, H.; Shao, C. Applications of structural equation modeling (SEM) in ecological

studies: An updated review. Ecol. Process. 2016, 5, 19. [CrossRef]
119. Ismaeel, W.S.E.; Mohamed, A.G. Indoor air quality for sustainable building renovation: A decision-support assessment system

using structural equation modelling. Build. Environ. 2022, 214, 108933. [CrossRef]
120. Gefen, D.; Straub, D.; Boudreau, M.-C. Structural Equation Modeling and Regression: Guidelines for Research Practice. Commun.

Assoc. Inf. Syst. 2000, 4, 1–78. [CrossRef]
121. Ali, A.H.; Elyamany, A.; Ibrahim, A.H.; Kineber, A.F.; Daoud, A.O. Modelling the relationship between modular construction

adoption and critical success factors for residential projects in developing countries. Int. J. Constr. Manag. 2023, 2023, 2185940.
[CrossRef]

122. Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.; Danks, N.P.; Ray, S. An Introduction to Structural Equation Modeling. In
Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R; Springer: Cham, Switzerland, 2021; Volume 21, pp. 1–197.
[CrossRef]

123. Dijkstra, T.K.; Henseler, J. Consistent and asymptotically normal PLS estimators for linear structural equations. Comput. Stat.
Data Anal. 2015, 81, 10–23. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1155/2019/1362730
https://doi.org/10.1080/15623599.2022.2092387
https://doi.org/10.1007/BF02294248
https://doi.org/10.1186/s13717-016-0063-3
https://doi.org/10.1016/j.buildenv.2022.108933
https://doi.org/10.17705/1cais.00407
https://doi.org/10.1080/15623599.2023.2185940
https://doi.org/10.1007/978-3-030-80519-7_1
https://doi.org/10.1016/j.csda.2014.07.008

	Assessment Framework for BIM-Digital Twin Readiness in the Construction Industry
	Recommended Citation

	Introduction 
	Literature Review 
	Emergence and Role of BIM-DT in the Construction Industry 
	Applications and Challenges of Integrating BIM-DT in Construction 
	Impact of BIM-DT Integration on Sustainability in Construction 
	Key Success Factors Influencing the Adoption of BIM-DT in Construction 

	Research Methodology 
	Phase 1: Exploratory Phase 
	Phase 2: Breakdown of the Structure of Factors 
	Phase 3: Pilot Survey 
	Phase 4: Questionnaire Survey 
	Phase 5: Structural Equation Modelling (SEM) 

	Results and Analysis 
	Demographic Information for Respondents 
	The Measurement Model Appraisal 
	The Structural Model Appraisal 

	Discussion 
	Conclusions and Implications 
	References

