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A B S T R A C T

Construction projects are prone to accidents and injuries, necessitating a focus on implementing safety programs.
However, the implementation of such programs is influenced by various factors. Developing countries often have
poor safety performance in their building sectors, with limited research in this area. This study aimed to identify
essential safety program activities (SPAs) specific to the building sector. Through a literature review and survey,
25 SPAs were identified and validated via a pilot survey involving building sector experts. A questionnaire survey
was conducted with 105 participants from the construction industry and academia. They were then categorized
into four interconnected measurements using Exploratory Factor Analysis (EFA): Safety Program Management
and Development (SPMD), Safety Culture Development (SCD), Safety Risk and Hazard Management (SRHM), and
Safety Leadership, Responsibility, and Commitment (SLRC). The impact of safety implementation (SI) on overall
project success (OPS) was analyzed using Partial Least Square- Structural Equation Modelling (PLS-SEM). Sub-
sequently, Synthetic Fuzzy Evaluation (SFE) was employed to determine the criticality and importance of each
SPA grouping for construction projects. The PLS-SEM analysis indicates that SI has a moderate impact on OPS,
with an R2 value of 45.4%. Moreover, the findings of the SFE highlight that the SLRC group is the most significant
in enhancing the safety implementation of the construction industry.

1. Introduction

The construction industry is a crucial economic sector in many
countries [1]. This industry, however, is associated with a high fre-
quency of hazards [2]. Despite progress from occupational health and
safety (OHS) regulations introduced in the 1970s, construction workers
still face elevated rates of fatalities and injuries compared to other in-
dustries [3]. This is largely due to the inherent complexities of con-
struction work - including continuous modifications, use of diverse
resources, temporary and collaborative tasks, unconducive work envi-
ronments, and involvement of multiple stakeholders [4].

According to the estimates provided by the [5], occupational-related

fatalities resulting from slips, falls, and movements experienced an
escalation from 805 in the year 2020–850 in 2021, corresponding to a
5.6% increase. Globally, the construction industry witness over 60,000
work-related deaths annually [6]. Despite ongoing safety efforts, acci-
dent rates in the global construction industry remain unacceptably high.
In the United States, construction accounted for 28% of all work fatal-
ities in 2018, representing the highest rate of any industry. The situation
is similarly concerning in the United Kingdom, where the construction
accident rate in 2019 is three times higher than the average rate across
industries [7]. Therefore, the construction industry must implement
operational safety measures to improve safety performance [8,9].

The situation is even worse in developing countries, where con-
struction safety regulations are either non-existent or poorly enforced
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due to inadequate oversight. Existing regulations may also be outdated
and irrelevant for modern practices [10]. Egypt’s construction industry,
among the emerging nations, is characterised by substandard safety
program application by construction companies [8]. This led to more
accidents, with a 19% increase from 539 in 2015–645 in 2016. Conse-
quently, there is a need for prompt actions to be taken or these numbers
will continue rising [11].

Notwithstanding the significance of safety actions in the Egyptian
construction industry, there is a lack of studies focusing on specific SPAs
and their impact on safety performance. This represents a critical
research gap that needs to be addressed. Compared to other countries
like Malaysia, Saudi Arabia, Iraq and Pakistan which have comprehen-
sively studied construction safety [4,10,12,13], Egypt requires more
country-specific research due to its unique cultural and operational
contexts.

This research aims to bridge the gap above by presenting a model
that examines the influence of SPAs on SI to attain OPS in Egyptian
construction projects. The study utilizes a hybrid PLS-SEM-SFE meth-
odology to build the model, which is not extensively used before in the
context of safety implementation in the Egyptian construction industry.

2. Activities that improve safety implementation

The construction industry is recognized as a high-risk sector due to
its labor-intensive nature and the extensive use of heavy equipment
[14]. Construction workers face severe risks like falls, encounters with
careless machinery, and being struck by heavy equipment [15].

To address these safety challenges, safety program activities (SPAs)
have emerged as an operational method to promote safety on con-
struction sites and manage risks [12]. The implementation of robust
safety programs is a practical approach to address common issues like
lack of safety regulations, training, resources, commitment, and
awareness [4].

Several prior studies have identified poor performance factors and
actions affecting safety program implementation in construction pro-
jects. For instance, [16] studied 20 safety programs and found that key
actions to improve construction safety performance include: employee
observation programs, safety perception surveys, tracking first-aid in-
cidents, supervisor involvement in safety policy, safety training for
managers, owner involvement in safety activities, location-specific
manager training, and adequate safety staffing.

[17] investigated 28 safety management system activities (SMSA)
and found that the following SMSA influence construction safety
implementation: incident investigation, pre-task hazard assessment,
emergency planning, employee engagement programs, formal safety
training, establishing safety procedures and goals, and incentive pro-
grams for safety performance.

Additionally, [18] analyzed 15 safety activities across 4 groups using
the Analytic Hierarchy Process (AHP) in Saudi Arabia. The results
showed that 7 factors accounted for 80% of the AHP weight, indicating
they were the most prominent for successful safety program imple-
mentation. These 7 factors were: i) proper regulations, ii) clear goals, iii)
personnel attitudes, iv) collaboration, v) operational implementation,
vi) safety training, and vii) organizational support. Based on a system-
atic literature review conducted to identify the key SPAs, a compre-
hensive list of the primary SPAs has been compiled and presented in
Table 1.

3. Research methods

This study’s research process comprised six distinct steps. Initially, a
systematic literature review was conducted to identify SPAs. Following
this, a pilot study was performed with construction industry experts to
validate the identified SPAs. The third step involved distributing a
questionnaire to practitioners in the construction industry to gather
their opinions on the validated SPAs. Subsequently, the EFA approach
was applied to categorize and group the SPAs. In Step 5, the PLS-SEM
approach was used to test the correlations between SPAs and
achieving SI to attain OPS. Finally, a SFE technique was applied to rank
and assess the groups of SPAs. These six steps are demonstrated in Fig. 1.

3.1. Questionnaire survey development, sampling technique and sample
size

Data collection involved a questionnaire survey comprising four
sections. The first section introduced the study problem, followed by
gathering respondents’ background information. The third section
involved evaluating SPAs and OPS factors. The final section included
open-ended questions for any additional SPAs or OPS factors. Following
[52–54], a Five-Point Likert Scale was employed to assess the effec-
tiveness of the collected factors. The targeted participants for this survey
were industry and academic professionals in Egypt. The survey tool
underwent refinement based on pilot test results before primary data

Nomenclature

Abbreviations Term Meaning
SPAs Safety Program Activities
EFA Exploratory Factor Analysis
SPMD Safety Program Management and Development
SCD Safety Culture Development
SRHM Safety Risk and Hazard Management
SLRC Safety Leadership, Responsibility, and Commitment
SI Safety Implementation
OPS Overall Project Success
PLS-SEM Partial Least Square- Structural Equation Modelling
SFE Synthetic Fuzzy Evaluation
OHS Occupational Health and Safety
AS Average Scores

Table 1
Safety activities with coding system.

Code Activities Reference

AT1 Assigning and accepting responsibility for safety [14,19,20]
AT2 Conduction of safety training programs [20–22]
AT3 Conduction of thorough hazard assessments [12,23]
AT4 Creation of a committee for health and safety [24–27]
AT5 Demonstration of visible commitment to safety [12,20,28]
AT6 Designation of safety officers with the appropriate authority [25,29]
AT7 Documentation of potential dangers [12,30]
AT8 Education and training of workers on the safe usage of

personal protective gear (PPG)
[31–34]

AT9 Encouraging employee participation in safety decision-
making

[14,16,35,
36]

AT10 Ensure safety precautions and procedures practices. [25,37]
AT11 Establishment of routines for maintenance to prevent

incidents
[34,38]

AT12 Establishment of safety regulations and policies [35,36,39]
AT13 Examination for safety [12,25]
AT14 Examination of incidents and almost-misses [40–42]
AT15 Implementation of safety controls in engineering [28,38,43]
AT16 Implementation of systems to track and address hazards [30,44]
AT17 Institution of rules, regulations, and administrative controls

for safety
[20,28]

AT18 Incentives for safety compliance [16,28,37,
45]

AT19 Orientation of new employees to safety procedures [19,46]
AT20 Provision of medical assistance and program [16,23,33]
AT21 Provision of PPG [36,47]
AT22 Evaluation and assessment of safety plans and programs [22,29,31]
AT23 Setting safety goals [48–50]
AT24 Assessment of patterns of injury and sickness [38,49,51]
AT25 Precautions against unforeseen events [11,25,38]

A.H. Ali et al.
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collection.
Random probability-based sampling was used to select participants

from a larger population for research or survey purposes. Using random
probability-based sampling, every member of the study population has
an equal chance of being chosen. It ensures a representative population
sample, which allows researchers to generalise their findings to the
larger population [55].

[56] argued that the sample size should be sensibly selected in
accordance with the research goals and the required accuracy and pre-
cision to obtain valid findings. This study established the sample size
based on the PLS-SEM technique, which was chosen for the analysis.
[57] suggests a PLS-SEM sample size of 100 or more. Similarly, [58]
recommend at least 100 cases. However, [59] claim PLS-SEM can be
used with just 33 cases. In this study, 105 valid responses were obtained
from 170 questionnaires, achieving a 61.7 % response rate.

3.2. Exploratory factor analysis (EFA)

EFA is commonly employed in social and behavioural sciences to
explore the structure of complex data sets, such as surveys or ques-
tionnaires. EFA can help researchers identify the underlying dimensions
or factors that underwrite the observed data disparity and inform the
development of theories or hypotheses about the constructs of interest
[60]. Moreover, EFA numerical approach is applied to recognise the
principal elements or constructs that explain patterns in observed data
[61]. The procedures of EFA involve the following steps: (1) selection of
variables and data preparation; (2) factor extraction; (3) factor rotation;
and (4) factor loading [62]. SPSS statistical software was used to
perform EFA, which identifies underlying elements within data and
groups different SPAs.

Fig. 1. Research design.

A.H. Ali et al.
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3.3. Development of PLS-SEM

This study aims to explore the impact of SPAs on SI and assess the
correlation between SI and OPS through a scientific methodology. To
achieve this objective, PLS-SEMwas employed for the analysis. PLS-SEM
is a statistical method used to study correlations among constructs in
Structural Equation Modeling (SEM). Unlike traditional SEM, which
relies on a covariance matrix, PLS-SEM uses a set of regression equations
to measure correlations among dependent and independent factors or
variables [13]. The PLS-SEM method is particularly useful in situations
where the sample size is relatively small or the data is not normally
distributed or highly skewed. It is also suitable for studies that aim to
predict outcomes and test hypotheses regarding the underlying data
structure [63]. The PLS-SEM method involves two stages: the mea-
surement model and the structural model [64].

3.4. Synthetic fuzzy evaluation

SFE is a decision-making technique used to evaluate complex sys-
tems with multiple criteria. This technique utilizes fuzzy logic, a
mathematical tool for handling uncertainty and imprecision, to measure
the relative significance of each criterion and its impact on the overall
evaluation [65]. The SFE approach aims to offer a structured and
transparent method for evaluating complex systems with multiple
criteria, considering the inherent uncertainties and imprecisions in the
evaluation process [66]. SFE provides several advantages over

traditional evaluation methods, including flexibility, the ability to
handle uncertainty, transparency, adaptability, and integration [67].

4. Results

4.1. Respondents’ profile

Fig. 2 illustrates the demographic information of the respondents,
providing a comprehensive overview of key demographic data.

4.2. Exploratory factor analysis for SPAs

The first step in conducting EFA involves selecting variables and
preparing the data for analysis. This was accomplished by identifying
the SPAs and evaluating them through a questionnaire survey. The
subsequent step involved extracting the factors, for which Principal
Component Analysis (PCA) was employed to estimate factor loadings
[68]. According to [60], the total number of factors that could be
extracted is guided by a scree plot, which is a commonly used method in
EFA. The scree plot is a graphical tool used to determine the number of
factors to retain, plotting the eigenvalues of each factor in descending
order against the total factors [60]. Fig. 2 depicts the initial eigenvalues
obtained and the Scree plot. Once the factors have been extracted, they
need to be rotated to facilitate interpretation. Rotation aims to achieve a
simpler structure where variables load predominantly on one factor
[68]. According to [69], varimax rotation is a popular method for

Fig. 2. Respondents profile.

A.H. Ali et al.
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rotating the factor matrix in EFA. Therefore, this study utilized varimax
rotation.

Table 2 displays four main components with eigenvalues exceeding
1.0. These components collectively accounted for 73.692 % of the
variance. Component 1, Safety Program Management and Development
(SPMD) explained 58.998 % of the variance. Components 2 and 3,
Safety Culture Development (SCD) and Safety Risk and Hazard Man-
agement (SRHM), explained 5.593 % and 4.654 % of the variance,
respectively. The fourth component, Safety Leadership, Responsibility,
and Commitment (SLRC) contributed 4.446 % to the variance. Fig. 4
illustrates the categorization along with activity and category coding
systems for SPAs.

[66] claimed that the adequacy of the factor solution was assessed
using the Kaiser-Meyer-Olkin (KMO) test, Bartlett’s sphericity test, and
commonalities. The KMO measures data appropriateness for factor
analysis by determining the proportion of variance generated by un-
derlying factors. A KMO of 0.6 or above is acceptable. The results
showed a KMO of 0.925, exceeding the threshold. Bartlett’s sphericity
test assesses whether the correlation matrix differs from the identity
matrix, indicating factor analysis suitability. A p-value <0.05 indicate
correlation and suggest component analysis. In this case, Bartlett’s test
had a p-value of 0.000, below the threshold. Communities measure the
overall variation in each underlying factors. Variables with low starting
communalities (< 0.3) may not be suitable for factor analysis due to
little variation explained by the model. The findings show all com-
monalities above 0.3, which is acceptable.

4.3. PLS-SEM for SPAs

Fig. 3 presents a guide to applying PLS-SEM, which consists of three
models: the first-order measurement model, second-order measurement
model, and the path or structural model. Each model has different types
of tests that serve specific goals.

4.3.1. First-order construct analytical model
First-order measurement models in PLS-SEM measure constructs

using observed items, which can be reflective or formative. Reflective
items indicate the construct, while formative items define it. These
models assess the reliability and validity of each construct and their

corresponding items [70]. The first-order measurement models include:
(1) Convergent validity, which examines the consistency of indicators
measuring the same latent variable; and (2) Discriminant validity, which
assesses the degree of uncorrelation between constructs [71]. To assess
convergent validity, the authors use several tests and measures,
including:

• Average Variance Extracted (AVE): This measure indicates the
total variance described by each concept compared to the total
variance resulting from the statistical error. The AVE (0.5) values are
generally acceptable for convergent validity [72]

• Composite Reliability (CR): This measure assesses the construct’s
internal reliability of the construct by calculating the ratio of actual
score discrepancy to observed score variance. CR values of 0.7 or
higher are generally acceptable for convergent validity [73].

• Cronbach’s Alpha: This measure is commonly applied to assess
inner reliability within PLS-SEM. The values of Cronbach’s alpha 0.7
or higher are generally measured as satisfactory for convergent
validity [64]. However, CR is often considered more precise than
Cronbach alpha.

• Factor Loadings: factor loadings represent the direction and
strength of correlation among each item and its respective construct.
Generally, factor loadings of 0.4–0.5 or higher are acceptable for
convergent validity [74].

According to the results presented in Table 3 and Fig. 6, all factor
loadings were deemed acceptable except for SRHM1 and SLRC1. These
two factors were excluded from the model due to their low factor
loadings (below 0.4), indicating a minimal impact on the respective
constructs.

In contrast, the authors use Cross-Loading and Fornell and Larcker’s
Criterion to assess discriminant validity. This test evaluates the con-
struct’s distinctiveness relative to other constructs in the model.
Discriminant validity is often assessed by comparing the square of the
correlation between AVE on an individual construct and other con-
structs in the model. Discriminant validity requires AVE values greater
than the squared correlations [63]. According to Table 4 and Table 5, the
model demonstrates discriminant validity in this study.

4.3.2. Second-order analytical model construct
The second-order measurement model creates a higher-level, more

abstract construct from the first-order constructs. Unlike the first-order
model, the "items" observed for the second-order constructs are the
first-order constructs themselves [73]. Second-order models are used
when the first-order constructs represent related concepts that can be
combined into a single higher-order construct [74,75]. In this study, a
second-order model was used to assess the statistical significance of the
four first-order constructs (i.e. SPMD, SCD, SRHM, SLRC) and their
relationship to SI.

• Beta and p-values: Beta values represent the strength of relationships
between constructs, while p-values indicate the statistical signifi-
cance of these relationships. Meaningful beta values are typically 0.1
or higher, and statistically significant p-values are usually less than
0.05 [76]. In Fig. 7, all constructs’ Beta and p-values meet their
criteria, indicating acceptance.

4.3.3. Structural model
In the PLS-SEM structural model, R2 and Q2 are two critical measures

used to evaluate the power of the goodness-of-fit and predictive model.

• R2 shows the percentage of variation in the dependent variable
explained by the independent variables in the model. Higher R2

values indicate better model fit [74]. This study’s R2 is 0.454,
meaning the model’s independent variables explain 45.4 % of the

Table 2
Rotated Varimax matrix.

SPAs Components

1 2 3 4

AT1 0.7
AT2 0.754
AT3 0.76
AT4 0.76
AT5 0.584
AT6 0.783
AT7 0.769
AT8 0.785
AT9 0.667
AT10 0.618
AT11 0.536
AT12 0.582
AT13 0.644
AT14 0.643
AT15 0.633
AT16 0.746
AT17 0.523
AT18 0.631
AT19 0.547
AT20 0.54
AT21 0.849
AT22 0.824
AT23 0.61
AT24 0.55
AT25 . 0.612
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dependent variable’s variation. This percentage indicates a moderate
relationship between SI and OPS.

• Q2 measures how much variance the model’s exogenous constructs
can predict in endogenous variables. Q2 higher values indicating
better predictive power. According to [63], Q2 values greater than
zero show the model’s predictive power, while values around or
beyond 0.25 suggest robust predictive relevance. Q2 for SI and OPS
in this study is 0.987 and 0.438, respectively, which exceed 0.25.
Thus, the model is robustly predictive.

4.4. Synthetic fuzzy evaluation for SPAs

4.4.1. The mean scores for SPAs
The initial step in applying SFE involved computing average scores

(AS) for the entire SPAs. The AS for SPAs can be estimated using Eq. 1.

Next, Eq. 2 was employed to calculate the total AS for each group.
Finally, to compute the overall AS for all groups, Eq. 3 was used. The
calculation for AS for all SPAs, including their respective groups, as well
as the overall AS for the entire groups, is presented in Fig. 8.

AS =

∑
w
N

=
5n5 + 4n4 + 3n3 + 2n2+1n1

N
(1)

TotalAS =
∑

ASsame group (2)

OverallAS =
∑

TotalAs for all groups (3)

Where: "AS" represent the average score for each SPA, "n" represents
the rating system for SPAs, ranging from 1 to 5, "N" represents the total
number of participants. The "TotalAS" is the sum of all the average scores
for the SPAs in the same group. the "OverallAS" is the sum of all the
"TotalAS" values for all groups.

4.4.2. The Weightings for SPAs and SPAs’ Groups
The weightings of each SPA are determined based on the average

score (AS) using Eq. 4. In contrast, the weightings of the four SPA groups
are computed using Eq. 5. The calculation of weightings for all SPAs,
including their respective groups, is illustrated in Fig. 8.

WEach SPA =
ASEach SPA

TotalAs for the same group
(4)

WEach SPA Group =
TotalAs for each group

OverallAS
(5)

Where: "WEach SPA" represent the weightings score for each SPA and
"WEach SPA Group" represent the weightings score for each SPA group.
(Fig. 9)

4.4.3. The membership function for each SPA (MFL3)
The first step in developing the SPA set membership functions

(MFL3) is determining each SPA’s membership function. This forms the
basis for calculating the group membership functions. Eq. 6 is used to
compute the SPA membership function from Likert Scale-based expert
ratings, resulting in a (1×5) matrix as per Eq. 7. The MFL3 calculations
for all SPAs are presented in Table 6.

Fig. 3. SPSS scree plot.

Fig. 4. Categorization along with assigned items.
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MFL1 Each SPA =
Percentage of Least Effective (LE)

LE

+
Percentage of Quite Effective (QE)

QE

+
Percentage of Moderate Effective (ME)

ME

+
Percentage of Effective (E)

E

+
Percentage of Very Effective (VE)

VE
(6)

Where: ’’MFL1 Each SPA” represent the membership function level for

each SPA, while "LE, QE, ME, E, VE" denote the respective percentages
of survey participants who provided ratings of 1, 2, 3, 4, or 5 for the
importance of a particular SPA.

R1×5 = (rSPAi1 , rSPAi2 , rSPAi3 , rSPAi4 , rSPAi5 ) (7)

Where: ʹ́R1×5ʹ́ denotes an evaluation or rating vector of dimensions
1×5 based on Likert scale. ʹ́rSPAi1 , rSPAi2 , rSPAi3 , rSPAi4 , rSPAi5ʹ́ are the
evaluation scores or ratings assigned to alternative i based on Likert
scale ratings from experts.

Table 3
Convergent validity tests.

Constructs Item Factor
loadings

Condition Cronbach’s
alpha

Composite
reliability

Average variance extracted
(AVE)

Condition

Safety Program Management and Development
(SPMD)

SPDM1 0.862 Agreed 0.946 0.955 0.705 Accepted
SPDM2 0.885 Agreed
SPDM3 0.868 Agreed
SPDM4 0.878 Agreed
SPDM5 0.853 Agreed
SPDM6 0.859 Agreed
SPDM7 0.621 Agreed
SPDM8 0.844 Agreed
SPDM9 0.854 Agreed

Safety Culture Development (SCD) SCD1 0.883 Agreed 0.954 0.96 0.708 Accepted
SCD2 0.893 Agreed
SCD3 0.853 Agreed
SCD4 0.81 Agreed
SCD5 0.856 Agreed
SCD6 0.792 Agreed
SCD7 0.795 Agreed
SCD8 0.828 Agreed

Safety Risk and Hazard Management (SRHM) SCD9 0.837 Agreed 0.751 0.732 0.5 Accepted
SCD10 0.859 Agreed
SRHM1 0.376* Deleted
SRHM2 0.781 Agreed
SRHM3 0.866 Agreed

Safety Leadership, Responsibility and
Commitment (SLRC)

SLRC1 0.33* Deleted 0.752 0.764 0.551 Accepted
SLRC2 0.883 Agreed
SLRC3 0.874 Agreed

Overall Project Success (OPS) OPS1 0.912 Agreed 0.925 0.947 0.817 Accepted
OPS2 0.913 Agreed
OPS3 0.908 Agreed
OPS4 0.882 Agreed

*Deleted items.

Fig. 5. Structure of PLS-SEM procedures.
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4.4.4. The membership function for each SPA group (MFL2)
Eq. 8 is employed to calculate MFL2 for each individual SPA group.

MFL2 for each SPA group is estimated based on multiplying the
weightings of each SPA in the same group by their corresponding MFL3
values. The MFL2 values for the groups are presented in Table 7.

DEach SPA Group =
∑n

i=1
Wi for each SPA in the same group

× Ri For each SPA in the same group

= Wi for each SPA in the same group ×

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

MFL1SPAi1
MFL1SPAi2

…
MFL1SPAin

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

= Wi for each SPA in the same group

×

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

SPA1i1
SPA1i2

…
SPA1in

SPA2i1
SPA2i2

…
SPA2in

SPA3i1
SPA3i2

…
SPA3in

SPA4i1
SPA4i2

…
SPA4in

SPA5i1
SPA5i2

…
SPA5in

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

(8)

Where: ’’DEach SPA Group’’ represents the matrix collection corre-
sponding to different SPA. ʹ́ × ʹ́ denotes the fuzzy multiplication oper-
ator, and ’’Ri for each SPA in the same groupʹ́ signifies the fuzzy matrix
associated with the evaluations or assessments for each SPA within the
same group.

4.4.5. The overall membership function for all SPAs’ groups (MFL1)
Eq. 9 computes MFL1 for all SPA groups by multiplying the

weightings of each group by their respective MFL2 values, then sum-
ming all the values. The computation of MFL1 for all groups is demon-
strated below.

Fig. 6. Factor loading values in First-Order model.

Table 4
Discriminant validity (cross loadings).

Constructs/Items OPS SCD SLRC SPDM SRHM

OPS1 0.912 0.579 0.538 0.581 0.586
OPS2 0.913 0.542 0.547 0.591 0.523
OPS3 0.908 0.587 0.539 0.592 0.501
OPS4 0.882 0.567 0.507 0.612 0.543
SCD1 0.621 0.883 0.614 0.785 0.71
SCD2 0.555 0.893 0.591 0.764 0.686
SCD3 0.462 0.853 0.552 0.734 0.626
SCD4 0.482 0.81 0.585 0.674 0.611
SCD5 0.487 0.856 0.573 0.747 0.623
SCD6 0.421 0.792 0.547 0.656 0.639
SCD7 0.488 0.795 0.596 0.693 0.683
SCD8 0.608 0.828 0.607 0.812 0.735
SCD9 0.55 0.837 0.589 0.821 0.701
SCD10 0.598 0.859 0.647 0.85 0.815
SLRC2 0.5 0.617 0.883 0.562 0.619
SLRC3 0.571 0.589 0.874 0.558 0.546
SPDM1 0.595 0.797 0.583 0.862 0.764
SPDM2 0.509 0.796 0.508 0.885 0.722
SPDM3 0.474 0.766 0.482 0.868 0.748
SPDM4 0.522 0.765 0.543 0.878 0.803
SPDM5 0.624 0.809 0.606 0.853 0.784
SPDM6 0.591 0.747 0.562 0.859 0.756
SPDM7 0.296 0.557 0.512 0.661 0.621
SPDM8 0.647 0.752 0.572 0.844 0.746
SPDM9 0.657 0.771 0.602 0.854 0.764
SRHM2 0.38 0.521 0.491 0.627 0.781
SRHM3 0.636 0.813 0.614 0.849 0.866

Table 5
Discriminant validity (Fornell-Larcker).

Constructs OPS SCD SLRC SPDM SRHM

OPS 0.904
SCD 0.63 0.899
SLRC 0.59 0.702 0.742
SPDM 0.657 0.841 0.657 0.893
SRHM 0.596 0.814 0.667 0.84 0.707
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Fig. 7. Second-order measurement model bootstrapping.

Fig. 8. AS, total AS, and overall AS for SPAs.
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DOverall for All Groups =
∑n

i=1
WAll Groups × RAll Groups

= Wi for each SPA group ×

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

MFL2SPAi1
MFL2SPAi2

…
MFL2SPAin

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

= Wi for each SPA group

×

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

SPA1i1
SPA1i2

…
SPA1in

SPA2i1
SPA2i2

…
SPA2in

SPA3i1
SPA3i2

…
SPA3in

SPA4i1
SPA4i2

…
SPA4in

SPA5i1
SPA5i2

…
SPA5in

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

(9)

Doverall = (0.362 0.396 0.120 0.122)

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.09
0.11
0.11
0.10

0.24
0.19
0.21
0.18

0.23
0.29
0.23
0.27

0.26
0.27
0.28
0.27

0.23
0.19
0.21
0.23

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= ( 0.10 0.21 0.26 0.270.21)

Fig. 9. Weights for all SPAs and their groups.

Table 6
MFL3 for All SPAs.

SPAs Code MFL3

SPDM1 0.06 0.25 0.20 0.31 0.18
SPDM2 0.10 0.16 0.28 0.23 0.23
SPDM3 0.05 0.26 0.21 0.22 0.27
SPDM4 0.16 0.15 0.25 0.19 0.25
SPDM5 0.11 0.25 0.20 0.27 0.17
SPDM6 0.08 0.26 0.19 0.30 0.18
SPDM7 0.09 0.24 0.27 0.27 0.14
SPDM8 0.07 0.23 0.22 0.21 0.28
SPDM9 0.07 0.24 0.16 0.28 0.26
SCD1 0.18 0.14 0.17 0.30 0.20
SCD2 0.08 0.23 0.23 0.23 0.24
SCD3 0.13 0.13 0.35 0.25 0.13
SCD4 0.11 0.16 0.32 0.23 0.17
SCD5 0.10 0.14 0.30 0.27 0.18
SCD6 0.05 0.21 0.38 0.20 0.16
SCD7 0.12 0.18 0.25 0.28 0.17
SCD8 0.07 0.17 0.30 0.25 0.21
SCD9 0.12 0.21 0.22 0.25 0.20
SCD10 0.10 0.21 0.20 0.30 0.18
SRHM1 0.09 0.23 0.23 0.25 0.21
SRHM2 0.12 0.18 0.22 0.30 0.18
SRHM3 0.11 0.19 0.21 0.27 0.22
SLRC1 0.13 0.10 0.24 0.32 0.20
SLRC2 0.10 0.19 0.30 0.23 0.18
SLRC3 0.05 0.22 0.25 0.22 0.27

Table 7
MFL2 for All SPAs’ groups.

SPAs Groups MFL2

SPMD 0.09 0.24 0.23 0.26 0.23
SCD 0.11 0.19 0.29 0.27 0.19
SRHM 0.11 0.21 0.23 0.28 0.21
SLRC 0.10 0.18 0.27 0.27 0.23
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4.4.6. The final evaluation matrix
Once MFL1 is calculated, the final evaluation matrix level for each

SPA group is computed using Eq. 10. Table 8 summarizes the final
estimation matrix for the SPA groups and their ranking.

EEach Group =
∑n

i=1
MFL1i for each SPA group × LSi for each SPA group (10)

Where: ’’EEach Group’’ represents the evaluation for each group, ’’
MFL1i for each SPA group’’ is the first-level membership function fuzzy ma-
trix, and ’’ LSi for each SPA groupʹ́is the five Likert scales.

5. Discussion

Project success may be greatly increased by using SI between prac-
titioners and their important activities. Revisions to SEMmodels and the
statistical values derived from these model evaluations provide a solid
foundation for comprehending relationships across the models included.
During the process of study and modification, several intriguing dis-
coveries are made. Compared to other industries, the building sector has
less general characteristics, such as product quality, productivity, and
functionality [77].

Additionally, in order to improve the performance of the construc-
tion project, it is important to investigate the influence of SI on building
success. The influence of SI on the project’s performance was ascer-
tained through the investigation of the relationship between the inde-
pendent and dependent variables. The results indicate that 45.5 % of the
project’s success is attributable to the SI’s implementation. Owing to
time, cost, and quality issues, the adoption of SI also has a substantial
association with the OPS when the value of β = 0.674, which is signif-
icant when the firm or organization raises 1 unit of SI, would also
enhance the project’s success by 0.674.

The results showed that certain of the SI implementation’s outputs
would assist those working on the project in properly managing it to
satisfy the client’s objectives for timeliness, quality, and cost. Based on
the aforementioned findings, we may infer that the success of the project
will be influenced by the SI’s output, which measures the organization’s
effectiveness in overseeing the project—which is precisely defined—-
while taking time, money, and quality into account. Every project suc-
cess finding in this investigation matched expectations.

The current result showed that the activities for safety implementa-
tion in construction projects are strongly influenced by the establish-
ment of routines for maintenance to prevent incidents which could
improve the company’s performance. The current result is comparable
to existing literature [8,78–80]. Safety activities positively influence
financial/economic, competitiveness and safety performances. Hence,
they indicate the compatibility between employee protection and the
company’s competitiveness [78].

Safety implementation activities in construction projects are also
influenced by establishing safety regulations and policies [30,81]. Using
factor analysis, [37] identified twelve barriers to safety activities in the
construction industry, which are further abridged into four groups: i)
poor safety awareness, ii) poor safety governance, iii) poor working
conditions and iv) obstructive organisation norms. Therefore, a system
of safety regulation (or governance) at the national level must be
established to resolve these barriers and enhance the construction
industry’s safety performance. This study further revealed that the ac-
tivities for safety implementation in construction projects are closely

related to the examination for safety [82,83].
Examination of safety tends to be accompanied by continuous

improvement (CI). For instance, an experiential analysis of the corre-
lation between safety and lean construction in the industrialised housing
industry revealed by [84] revealed that the prediction of rates of acci-
dents could be lessened through the implementation of lean. Thus, CI
programs are correlated with considerable improvement in safety ac-
tivities and lower accident rates, irrespective of the company’s pro-
duction level. Evaluating and implementing new safety training
techniques for construction industry workers can enhance safety com-
petencies and improve motivational innovation concerning the con-
struction industry’s safety performance [85].

Additionally, the effectiveness of participatory human factors safety
training and examination provides a promising substitute for inactive
learning approaches. Thus, its inspiring effect complements other safety
training activities [85]. [86] argued that learning from accidents, the
flow of safety information, and resilient safety information culture
concerning safety performance in construction could improve learning
from incidents and safety performance in construction by developing
strategies to ensure non-defective safety data and smooth data flow in a
robust organisational context. Learning from incidents and near-misses
could improve the safety performance of construction employees [87].
Therefore, the underlying safety activities factors in Component 1 are
essential to enhance the safety performance of construction employees.

The top critical benefits of safety controls comprised employee risk
reduction, safer operational environments, considering safety manage-
ment as an integral part of construction project management, and
improved project management [88]. However, the significant hurdles to
safety controls are placing safety at the lower priority because of cultural
disparity in companies, high rates of worker turnover, tight work
schedules, obstacles by subcontractors, lethargic participation in
implementing safety management system by project stakeholders [88].
Hence, safety controls in engineering need to be examined to enrich the
literature with knowledge of the benefits of implementing safety activ-
ities in the construction industry.

Activity is everyone’s job in the construction industry since risk
management in construction is challenging [89]. It is essential to
consider safety in awarding contracts and developing project timelines,
and risk management must be iterative. Thus, top-down control of safety
commitment should be communicated to and incorporated by con-
struction workers and managers all over the project site [89]. An
improved understanding of how contracting relationships, employees’
remuneration and liability insurance measures affect safety could move
risk management determinations from employee attitude to a broader
focus on how these safety activities concerning medical assistance and
program and relationships influence incentives and disincentives for
projects’ site safety and workers health [89].

Thus, the effectiveness of macro factors on the application of medical
safety care management in construction systems [90]. Assessment and
evaluation of safety activities program and plans implementation in the
construction industry is another critical safety activity, as revealed by
proposed SEM model. However, proper evaluation of safety plans and
programs requires health and safety implementation technologies in the
construction industry [91]. Embracing and implementing novel solu-
tions is an efficient way to improve the construction industry’s safety
performance [91].

The application of technology as a precautionary measure or stem-
ming the observed lop-sided rate of employee injuries and deaths in the
construction industry compared to other industries has drawn attention
over the last twenty years [91]. The literature has highlighted the need
to increase awareness concerning the practicality and value of tech-
nology for health and safety activities management in construction and
factors that prevent or limit technology application to evaluate and
assess safety in the construction industry [91].

Table 8
Evaluation and ranking for each SPA group.

Groups Evaluation (E) Rank

SLRC 3.49 1
SPMD 3.45 2
SRHM 3.42 3
SCD 3.39 4
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6. Conclusion

Safety performance in construction globally remains a significant
concern, especially due to financial constraints. Developed nations have
made considerable advancements in enhancing safety, contrasting with
the slower progress in developing nations. This study focusses on Egypt’s
construction sector, known for its inadequate safety culture and limited
safety research. The primary aim is to identify significant SPAs crucial
for enhancing safety within the industry.

This study conducted a systematic literature review resulting in the
identification of 25 significant SPAs. Subsequently, data collection via a
survey tool was performed with 105 participants. The SPAs were then
grouped into four categories using EFA: (1) SPMD; (2) SCD; (3) SRHM;
and (4) SLRC. Following this, PLS-SEM was executed to develop a
mathematical model to examine the relationships between different
variables. Based on the R2 result, the model’s independent variables
explain 45.4 % of the dependent variable’s variation, indicating a
moderate relationship between SI and OPS. Lastly, the clusters were
subjected to SFE for evaluation, prioritization, and ranking concerning
their importance. The results show that SLRC achieved the first rank,
followed by SPMD, SRHM, and SCD, respectively.

7. Implications and contribution

This study presents a novel perspective on construction safety
management in Egypt, representing one of the initial empirical in-
vestigations in this field. Previous research has often neglected safety
implementation in construction engineering management, particularly
in identifying SPAs and OPS. This study establishes a crucial theoretical
foundation, contributing to existing knowledge on the utilization of
SPAs in construction. It underscores the importance of implementing
SPAs in developing nations like Egypt, where safety practices are still
developing. The findings highlight the complex nature of activities that
support the widespread adoption of SI in construction. Overall, this
research enhances our understanding of the intricate relationship be-
tween SPAs, SI, and OPS.

On the other hand, this study offers a valuable practical contribution
to safety practices in the construction industry, specifically focusing on
small and medium-sized organizations, aiming to enhance safety mea-
sures. By leveraging this knowledge, such firms can improve their
competitiveness and secure previously unattainable projects due to
safety issues. Furthermore, this study’s results provide significant in-
sights to professionals, clients, and construction management regarding
the SPAs that drive the effective adoption of safety practices in the
construction industry.
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[78] B. Fernández-Muñiz, J.M. Montes-Peón, C.J. Vázquez-Ordás, Relation between
occupational safety management and firm performance, Saf. Sci. 47 (2009)
980–991, https://doi.org/10.1016/j.ssci.2008.10.022.

[79] Y. Xi, S. Hu, Z. Yang, S. Fu, J. Weng, Analysis of safety climate effect on individual
safety consciousness creation and safety behaviour improvement in shipping
operations, Marit. Policy Manag. 00 (2022) 1–16, https://doi.org/10.1080/
03088839.2022.2059718.

[80] R. Selleck, M. Cattani, M. Hassall, Proposal for and validation of novel risk-based
process to reduce the risk of construction site fatalities (Major Accident Prevention
(MAP) program), Saf. Sci. 158 (2023) 105986, https://doi.org/10.1016/j.
ssci.2022.105986.

[81] M.K. Buniya, I. Othman, R.Y. Sunindijo, A.F. Kineber, E. Mussi, H. Ahmad, Barriers
to safety program implementation in the construction industry, Ain Shams Eng. J.
12 (2021) 65–72, https://doi.org/10.1016/j.asej.2020.08.002.

[82] S. Demirkesen, Measuring impact of Lean implementation on construction safety
performance: a structural equation model, Prod. Plan. Control 31 (2020) 412–433,
https://doi.org/10.1080/09537287.2019.1675914.

[83] M. Khairi, D. Darmawan, Strengthening the culture of occupational safety and
health as a contributor to the formation of construction project performance,
J. Mark. Bus. Res 1 (2021) 39–50. 〈https://doi.org/10.56348/mark.v1i2.34〉.

[84] I. Nahmens, L.H. Ikuma, An empirical examination of the relationship between
lean construction and safety in the industrialized housing industry, Lean Constr. J.
2009 (2009) 1–12.

[85] M. Nykänen, V. Puro, M. Tiikkaja, H. Kannisto, E. Lantto, F. Simpura, J. Uusitalo,
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