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A novel “MnOx/Pt/MWCNT-GC” nanocatalyst is recommended for the electrooxidation of formic acid (EOFA), the principal
anodic reaction in the direct formic acid fuel cells (DFAFCs). The sequential (layer-by-layer) protocol was employed to prepare
the catalyst through the electrodeposition of Pt (nano-Pt) and manganese oxide (nano-MnOx) nanoparticles onto the surface
of a glassy carbon (GC) electrode supported with multiwalled carbon nanotubes (MWCNTs). The nano-MnOx could
successfully mediate the mechanism of EOFA by accelerating the charge transfer, “electronic effect”. On the other hand,
MWCNTs could enhance the catalytic performance by changing the surface geometry that inhibited the adsorption of
poisoning CO, which is a typical intermediate in the reaction mechanism of EOFA that is responsible for the potential
deterioration of the catalytic performance of DFAFCs. Interestingly with this modification, a significant enhancement in the
catalytic activity and stability toward EOFA was achieved. Several techniques will be employed to evaluate the catalyst’s
morphology, composition, crystal structure, and activity and further to understand the role of each of the nano-MnOx and
MWCNTs in the catalytic enhancement.

1. Introduction

The electrooxidation of formic acid (EOFA) has recently
gained an incredible attention in the sector of the power gen-
eration for potential applications in the direct formic acid
fuel cells (DFAFCs) [1, 2]. In fact, with the global movement
to address the climate change and sustain affordable and
clean electrical power sufficient enough to keep pace with
the rapidly growing population and industrialization, it
became mandatory to reduce the share of fossil fuels in the
power schemes and replace it with alternative greener and
renewable technologies [3–5]. The DFAFCs have presented
a better scenario for employing small organic liquid fuels
as formic acid (FA) instead of H2 for the power generation
for several portable electrical devices. The common risky
challenges associating the production, transport, saving,
and operation of H2 have absolutely disappeared with FA

while retaining a higher (if compared to 1.2 kWhkg−1 and
0.18 kWhL−1 of H2) gravimetric and volumetric energy den-
sity of 1.7 kWhkg−1 and 2.1 kWhL−1 with a little fuel cross-
over flux via Nafion® membranes [6, 7]. Moreover, DFAFCs
offered a competitive theoretical open-circuit potential
(1.48V vs. RHE); excelling that (1.23V vs. RHE) [8, 9].
Nonetheless, the kinetics (rate and mechanism) of EOFA
still encounters the convenient and reliable commercializa-
tion of DFAFCs.

Normally, Pt and Pd catalysts are recommended for
EOFA, but Pd suffers an inherent instability resulting per-
haps from its dissolution in harsh acidic media [10]. On
the other hand, Pt experiences severe poisoning with reac-
tion intermediates as CO that is released spontaneously to
block most of the Pt active sites. Research is oriented, paral-
lel to minimizing the Pt loading, to overcome its poisoning
and to improve its catalytic efficiency toward EOFA. This
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was attempted by modifying (doping/alloying) Pt with other
metals (Pd, Ni, Co, Cu, Mn, etc.) and/or metal oxides (NiOx,
CoOx, CuO, MnOx, etc.) in the presence of a proper sub-
strate to structurally and electronically improve the surface
Pt characteristics. In this regard, the modification of Pt with
Pd and CeO2 on multiwall carbon nanotubes (MWCNTs)
succeeded to improve the mass activity of the catalyst at least
three times while maintaining a seven-fold enhancement in
its stability if compared to the commercial PtRu−C catalyst
[11]. The role of MWCNTs as a substrate has been investi-
gated separately where a minute amount of MWCNTs could
effectively improve the reaction kinetics (1.6 times that of a
bare Pt/GC electrode) and mitigate the inherent poisoning
of a Pt/GC catalyst toward methanol oxidation [12]. The
surface functionalization of AuPd@ZrO2 nanoparticle-
based anodes with MWCNTs inspired as well a remarkable
enhancement in the catalyst’s activity toward EOFA which
depended on the AuPd2 size, Pd surface coverage, PdOx
content, and ZrOx stoichiometry [13]. Therein, nonstoichio-
metric ZrOx nanoparticles were bonded to MWCNTs
through C-OOH groups, forming the Zr-O-C bonds while
Pd was deposited in a ternary phase (Pd, AuPd, and Au)
nanoparticles which formed with ZrOx an intermetallic
Pd-O-Zr phase. A remarkable enhancement in the catalyst’s
durability was attained with the MWCNT-functionalization
that enriched the surface with plenty of oxygen containing
functional groups which facilitated the desorption of poison-
ing CO species. An improvement in the electronic properties
of the catalyst was also suggested. A similar behavior was
reported by Maturost et al. but with CeO2 and PdPt bimetal-
lic alloy on the surface of MWCNTs [11]. They also
suggested a substantial improvement in the kinetics of
EOFA and its mass transfer efficiency owing to the catalyst
structure (Pd and/or Pt particle size and dispersibility) and
its electronic properties that got optimized with the
MWCNT-functionalization. Recently, a substrate functiona-
lization with a minute amount of MWCNTs imparted a sig-
nificant enhancement in the catalytic activity and durability
of nano-Pt and NiOx/Pt nanocatalysts for methanol oxida-
tion [12] and EOFA [1], respectively. This extended to tune
the mechanism of EOFA exclusively in the desired (low-
overpotential) dehydrogenation pathway with a complete
suppression for the CO poisoning [1]. Other oxides as man-
ganese oxide (MnOx) are of interest for fuel cell applications
as Mn enjoys the existence in multiple stable oxidation states
and has a vacant d-orbital that accommodates the electrons
involved in the fuel oxidation and, hence, facilitate its reac-
tion kinetics [14–17]. Herein, the excellent catalytic perfor-
mance of a MnOx/Pt nanostructured anode on a
MWCNT-grafted substrate toward EOFA is reported.

2. Experimental

2.1. Catalyst Fabrication. All the chemicals used in this
investigation were of analytical grades and were used with-
out prior purifications. A glassy carbon (GC, d = 3:0mm)
rod/substrate was used as the working electrode in the cata-
lyst’s preparation and in the electrocatalytic measurements.
Before using, the GC electrode was polished mechanically

with No. 2000 emery paper before repeating polishing with
aqueous slurries of successively finer alumina powder (down
to 0.06mm) on a polishing microcloth. Next, the GC elec-
trode was rinsed thoroughly with second distilled water. A
spiral Pt wire and an Ag/AgCl/NaCl (3M) electrode were
always used as the counter and reference electrodes,
respectively.

To prepare the catalyst, the cleaned GC electrode
together with the Pt wire and the Ag/AgCl/NaCl (3M) refer-
ence electrode were all dipped in 0.1M Na2SO4 solution
containing 1mM H2PtCl6 and a charge of 10mC was passed
at 0.1V to deposit nano-Pt onto the GC surface. This electrode
will be next abbreviated as the Pt/GC electrode. To deposit
MnOx, the Pt/GC electrode served as the working electrode
with the regular electrochemical setup and a charge of
16mCwas allowed to pass at 0.1V from in 0.1MNa2SO4 con-
taining 1.0mM Mn(CH3COO)2 solution. This electrode will
also be abbreviated as the MnOx/Pt/GC electrode.

To inspect the role of the substrate grafting with
MWCNTs, a GC substrate was functionalized with
MWCNTs (multiwalled, internal diameter: 5-10 nm, outer
diameter: 25 nm, length: 10-30μm, specific surface area:
>55m2·g-1, purity: >99.9%) before the deposition of nano-
Pt and nano-MnOx. To do this, 10mg of MWCNTs was
mixed with 1mL 5% Nafion/ethanol solution under sonica-
tion for 1 h. Then, 10μL of the obtained suspension was
sprayed on the surface of a GC substrate and left to dry in
air at room temperature for another 1 h before washing with
double distilled water. The MWCNT-grafted GC electrode
was further modified with nano-Pt and nano-MnOx (as
mentioned previously), and the catalyst will be termed the
MnOx/Pt/MWCNT/GC catalyst.

2.2. Electrochemical Measurements. The electrochemical
measurements were carried out in a traditional three-
electrode glass cell at room temperature (~25 ± 1°C) using
a Bio-Logic SAS potentiostat (model SP-150) operated with
EC-Lab software. The catalytic performance of the modified
electrodes toward EOFA was investigated in 0.3M FA solu-
tion (pH = 3:5).

2.3. Material Characterization. The morphology and ele-
mental composition were evaluated using a field-emission
scanning electron microscope (FE-SEM, Quattro S, Thermo
Fisher Scientific USA) whose accelerating voltage extended
from 200V to 30 kV with a magnification range from 6 to
2500000x that equipped with an energy dispersive X-ray
spectrometer (EDS, AMETEK USA Element Detector). The
crystallographic information was obtained using a high-
resolution X-ray diffractometer (XRD-PANalytical X’Pert
Pro powder) operated with a Cu anode (wavelength
0.154 nm, maximum 2.2 kW, and 60 kV).

3. Results and Discussions

3.1. Electrochemical Characterization. Electrochemically, the
characterizations of the as-prepared catalysts were obtained
and useful information about the catalytic ingredients could
be obtained. The cyclic voltammograms (CVs) of the Pt/GC,
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MnOx/Pt/GC, and MnOx/Pt/MWCNT-GC catalysts in
0.5M NaOH at a potential scan rate of 100mVs–1 are
depicted in Figure 1. The typical characteristic behavior of
a polycrystalline Pt surface in an alkaline medium was
observed at the Pt/GC electrode (Figure 1(a)). The hydrogen
adsorption/desorption (Hads/des) peaks were observed in the
potential range from −0.5 to −0.9V with the Pt oxidation
(Pt→PtO) extending in the anodic potential biasing from
−0.2 to 0.6V. The reduction of PtO (PtO→Pt) was also obvi-
ous in the cathodic scan at ca. −0.35V [14, 18, 19].

At the MnOx/Pt/GC (Figure 1(b)) and MnOx/Pt/
MWCNT-GC (Figure 1(c)) catalysts, new features were
observed:

(i) Decreases in the charge associating theHdes peaks were
observed which were consistent with the consumption
of the Pt surface in the deposition of nano-MnOx [20].
The decrease in this peak was larger for the MnOx/Pt/
MWCNT-GC (Figure 1(c)) catalyst which presumably
indicated the role of MWCNTs in the geometrical
reorganization of nano-Pt. This reduction in the inten-
sity of the Hdes peaks did not accompany similar
decreases in the intensities of the PtO→Pt peaks as
they interfered with the peaks corresponding to the
Mn transformations

(ii) Two new anodic peaks were observed at ca. −0.25
and 0.19V that were assigned, respectively, to the
(Mn→Mn (II)) and (Mn (II) to Mn (IV)) oxidations
[21]. Their corresponding cathodic peaks appeared,
respectively, at ca. 0.4 and−0.27V

(iii) An observable increase in the double layer capaci-
tance which was attributed to the surface composi-
tion change [22]

To further describe the surface changes after modifying
the Pt/GC electrode with nano-MnOx and MWCNTs, two
important parameters were extracted from Figure 1. The
first parameter is the electrochemical active surface area
(ECSA) of the Pt (active component of the catalyst for
EOFA) which could be calculated using the following equa-
tion [23].

ECSA = QH

210 μC cm–2 , ð1Þ

where QH (μC) is the charge associated with the hydrogen
desorption peaks and 210μCcm−2 is the charge required
(per specific surface area) for hydrogen desorption from an
ideal Pt surface. The decrease in the Pt surface area after
the modification with nano-MnOx was thought to originate
from, as previously mentioned, the partial deposition of
MnOx at the Pt surface.

The second parameter is the Pt surface coverage (θ). This
parameter describes how much the Pt was covered after the
modification with nano-MnOx and MWCNTs and could be
calculated using:

θ% = 1 − ECSAmodified
ECSAunmodified

� �� �
× 100, ð2Þ
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Figure 1: CVs obtained at the (a) Pt/GC, (b) Mn/Pt/GC, and (c) Mn/Pt/CNT-GC electrodes in 0.1M NaOH. Potential scan rate: 100mV s–1.

Table 1: Summary of the electrochemical data extracted from
Figure 1.

Electrode ECSA (cm2) θ (%)

Pt/GC 0.65 —

Mn/Pt/GC 0.57 12

Mn/Pt/CNT-GC 0.60 10
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where ECSAmodified is the surface area of the modified elec-
trode and the ECSAunmodified is the surface area of the
unmodified electrode. Table 1 summarizes the ECSA and
surface coverage calculations extracted from Figure 1.

3.2. Material Characterization. Material characterizations of
the MnOx/Pt/MWCNT-GC electrode (the best one exhib-
ited the highest catalytic activity and stability toward EOFA,
refer to Section 3.3) have been extended to further determine
its morphology, composition, and crystal structure. Figure 2
(a) shows the FE-SEM image of the MnOx/Pt/MWCNT-GC
electrode. It illustrated the electrodeposition of MnOx and
Pt onto the MWCNT-modified GC surface as well-
distributed spherical particles having an average size of ca.
85 nm. It is thought that modifying the GC surface with
the MWCNTs was responsible for such homogenous load-
ing of Pt and MnOx as previously observed for the deposi-
tion of Pt over the MWCNT-GC electrode [12, 22]. In this
regard, we would highlight that the other two electrodes
(Pt/GC and MnOx/Pt/GC) have been characterized in other
previous study and unfortunately they did not exhibit such a
homogenous texture like that of the proposed catalyst,
MnOx/Pt/MWCNT-GC [14, 15].

Compositionally, the EDS analysis of the MnOx/Pt/
MWCNT-GC electrode (Figure 2(b)) confirmed the deposi-
tion of the different catalyst ingredients (C, O, Pt, and Mn)
and assisted in calculation of their relative ratios (see
Table 2). Figure 2(c) additionally provides the elemental
mapping for the MnOx/Pt/MWCNT-GC electrode which
further confirmed the homogeneous distribution of all cata-
lyst ingredients.

Furthermore, in order to investigate the crystal structure,
XRD technique was utilized. Figure 2(d) shows the XRD
pattern of the modified MnOx/Pt/MWCNT-GC electrode.
Several diffraction peaks were identified at ca. 25°, 43°, and
79° corresponding, respectively, to the (0 0 2), (1 0 0), and
(1 1 0) planes of hexagonal C structure [24]. Also the diffrac-
tion peaks identified at ca. 40°, 47°, 68°, and 82° belonged,
respectively, to the (1 1 1), (2 0 0), (2 2 0), and (3 1 1) planes

of the Pt face-centered cubic (fcc) lattice [25]. Moreover, the
diffraction peaks appeared at ca. 30°, 45°, and 47° were corre-
sponding, respectively, to the (1 1 0), (2 0 0), and (1 1 1)
planes of the cubic β-Mn oxide structure [26].

3.3. Electrocatalysis of EOFA. Figure 3 shows the CVs of
EOFA at the Pt/GC, MnOx/Pt/GC, and MnOx/Pt/
MWCNT-GC electrodes in an aqueous solution of 0.3M
formic acid (pH = 3:5). EOFA on Pt-based electrocatalysts
proceeds commonly in two different pathways [27–29].
The first pathway involves the dehydrogenation of FA to
CO2 (Equation (3)). This direct route takes place at a low
potential domain and so shifts the actual voltage of DFAFCs
closer to its theoretical value. That is why the direct pathway
was considered the favorable pathway for EOFA [30–32].
Herein, at the Pt/GC electrode (Figure 3(a)), the peak
observed at 0.35V in the anodic scan was assigned to this
direct pathway. The corresponding current density of this
peak (Ip

d) could be monitored to check the density of the
active Pt sites that have participated in this pathway [18, 33].

HCOOH aqð Þ + Pt⟶ Pt + CO2 gð Þ + 2H+
aqð Þ + 2e− ð3Þ

The second pathway for EOFA is the dehydration of FA
(Equation (4)). This will generate CO that will be nonfaradi-
cally adsorbed at the Pt surface blocking its active sites. That
is why, this indirect pathway was considered the unfavorable
pathway for EOFA [34, 35].
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Figure 2: FE-SEM image (a), EDS analysis (b), elemental mapping (c), and XRD analysis (d) of the Mn/Pt/CNT-GC electrode.

Table 2: Summary of the electrochemical data extracted from
Figure 2(b).

Element Weight (%) Atomic (%) Error (%)

C K 54.36 92.71 7.73

O K 1.99 2.55 32.97

MnK 0.56 0.21 25.43

PtL 43.08 4.52 7.65
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HCOOH + Pt⟶ Pt – COads + H2O ð4Þ

With more biasing of the potentials in the anodic direc-
tion, the Pt surface will be hydroxylated (Equation (5)) that
facilitates the indirect oxidative removal of CO (Equation
(6)). The anodic peak observed at ca 0.75V reflected that
pathway, and its corresponding current density (Ip

ind) could
give a picture about the intensity of CO poisoning of the Pt
surface [18, 33].

Pt + H2O⟶ Pt –OH +H+ + e− ð5Þ

Pt – COads + Pt –OH⟶ 2Pt + CO2 + H+ + e− ð6Þ

Now after most of the poisoning CO has been oxidized
in the forward scan, EOFA could proceed in the backward

cathodic scan mainly via the direct pathway (peak at ca.
0.5V) with a high current density (Ip

b) [36].
After modifying the Pt/GC electrode firstly with nano-

MnOx (MnOx/Pt/GC electrode) then with MWCNTs
(MnOx/Pt/MWCNT-GC electrode), the degree of catalytic
enhancement toward EOFA will be tracked using three
parameters, Ip

d/Ipind, Ipd/Ipb, and onset potential of EOFA

(Eonset). A high Ip
d/Ipind value indicates the availability of

excess active Pt sites free to participate in the direct EOFA
at low potential. Meanwhile, a high Ip

d/Ipb value corre-
sponds to a low level of CO poisoning, whereas a more neg-
ative Eonset value correlates to a less required overpotential
for the reaction, thermodynamics enhancement [37]. At
the Pt/GC electrode (Figure 3(a)), the values of Ip

d/Ipind,
Ip

d/Ipb, and Eonset were ca. 0.93, 0.24, and –0.005V.
Although nano-MnOx is not active toward EOFA [20, 38],
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Figure 3: CVs obtained at the (a) Pt/GC, (b) Mn/Pt/GC, and (c) Mn/Pt/CNT-GC electrodes in 0.3M FA (pH = 3:5). Potential scan rate:
100mVs–1.

6 Journal of Chemistry



the catalytic performance of the MnOx/Pt/GC electrode
(Figure 3(b)) was higher than that of the Pt/GC electrode
toward EOFA in terms of higher Ip

d/Ipind (3.13) and Ip
d/

Ip
b (0.50) and lower Eonset (–0.076V). Fascinatingly after

the modification with MWCNTs (which is also inactive
toward EOFA [39, 40]) in the case of the MnOx/Pt/
MWCNT-GC electrode (Figure 3(c)), the CO poisoning
almost disappeared. This was reflected from the highest Ip

d/
Ip

ind (18.6) and Ip
d/Ipb (1.2) and the lowest Eonset (–0.079V)

values. Table 3 provides a summary of the Ip
d/Ipind, Ipd/Ipb,

and Eonset values obtained from Figure 3.
Furthermore, the catalytic stability of the modified elec-

trodes was inspected. Figure 4 shows the chronoampero-
metric (i-t) curves obtained at the Pt/GC (Figure 4(a)),
MnOx/Pt/GC (Figure 4(b)), and MnOx/Pt/MWCNT-GC
(Figure 4(c)) electrodes in a 0.3M aqueous solution of FA
(pH = 3:5) at a potential of 0.25V for 1800 s. A poor catalytic
stability was observed at the Pt/GC electrode which owned a
fast chronic decay in current density, in agreement with
previous investigations [31, 32]. Unfortunately, this unde-
sirable decay was kept almost the same for the MnOx/
Pt/GC electrode (Figure 4(b)) but surprisingly slowed
down to a great extent at the MnOx/Pt/MWCNT-GC elec-
trode (Figure 4(c)). The maximum stability, in terms of
the highest and steady-state current density, was obtained
at the MnOx/Pt/MWCNT-GC electrode. Till now, modifi-

cations with nano-MnOx and MWCNTs were effective in
maximizing the catalytic activity and the stability toward
EOFA. But the question here is what is the role of each
of nano-MnOx and MWCNTs in such observed enhance-
ment? The next section will answer this question.

3.4. Mechanisms of Enhancement. The electrochemical
impedance spectroscopy (EIS) was employed to monitor
the charge transfer resistance (Rct) of the proposed modified
electrodes during EOFA. In principle, Rct that is equivalent
to the polarization resistance of the electrochemical system
is represented by the diameter of the extrapolated semicircle
in the Nyquist diagram [41]. In this regard, the larger the
diameter of the semicircle the higher Rct, and consequently,
the slower kinetics of the reaction is [42]. Figure 5 shows the
Nyquist plots obtained at the Pt/GC, MnOx/Pt/GC, and
MnOx/Pt/MWCNT-GC electrodes in a 0.3M aqueous solu-
tion of FA (pH = 3:5) at a potential of 0.2V in the frequency
range (10 mHz to 100 kHz). The fitting has been carried out
by the EC-Lab software, and the equivalent circuit of this
system was displayed in the inset of Figure 5, where Rct, Rs
, andCdl refer to the charge transfer resistance associating
EOFA, the solution resistance, and the double layer capaci-
tance, respectively. Figure 5 shows a lower Rct (0.75 and
0.92 kΩ), respectively, at the MnOx/Pt/GC and MnOx/Pt/
MWCNT-GC electrodes compared with 3.04 kΩ obtained
at the Pt/GC electrode (data are summarized in Table 3).

(a) Pt/GC
(b) Mn/Pt/GC
(c) Mn/Pt/CNTs-GC 

t / s
0 300 600 900 1200 1500 1800

I/
m

A
cm

–2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: Current transients obtained at the (a) Pt/GC, (b) Mn/Pt/GC, and (c) Mn/Pt/CNT-GC electrodes in 0.3M FA (pH = 3:5) at 0.25V.

Table 3: Summary of the electrochemical data extracted from Figures 3, 5, and 6.

Electrode Ip
d/Ipind Ip

d/Ipb Eonset (V) @ 0.1mAcm–2 Rct (kΩ) QCO (mC)

Pt/GC 0.93 0.24 –0.005 3.04 1.10

Mn/Pt/GC 3.13 0.50 –0.076 0.75 1.09

Mn/Pt/CNT-GC 18.6 1.20 –0.079 0.92 0.01
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This inferred about a facilitated charge transfer and
improved catalytic activity of the MnOx/Pt/GC and
MnOx/Pt/MWCNT-GC electrodes toward EOFA. It is
important to mention here that the Rct values obtained at
the MnOx/Pt/GC and MnOx/Pt/MWCNT-GC electrodes
were so close which implies that the modification with
MWCNTs did not participate in, rather the nano-MnOx
was the catalyst component responsible for, such way of
enhancement [20].

To precisely recognize the role of MWCNTs in the cata-
lytic enhancement, CO was chemisorbed from 0.5M formic
acid at open-circuit potential on the Pt/GC, MnOx/Pt/GC,
and MnOx/Pt/MWCNT-GC electrodes for 10min. Then,
this adsorbed CO layer was stripped electrochemically in
0.5M Na2SO4 (pH = 3:5) as shown in Figure 6. At the Pt/
GC electrode (Figure 6(a)), the surface active sites were
blocked at lower potentials because of the adsorbed CO
which was next oxidized at ca. 0.70V. It is worthy to add

(a) Pt/GC
(b) Mn/Pt/GC 
(c) Mn/Pt/CNTs-GC 
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A
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Figure 6: LSVs for oxidative CO stripping obtained at the (a) Pt/GC, (b) Mn/Pt/GC, and (c) Mn/Pt/CNT-GC electrodes in 0.5M Na2SO4
(pH = 3:5). Potential scan rate: 50 mVs-1. Before measurements, CO was adsorbed from 0.5M FA at the open circuit potential for 10min.
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Figure 5: Nyquist plots obtained in 0.3M FA (pH = 3:5) recorded at AC potential amplitude of 0.20V obtained at the (a) Pt/GC, (b) Mn/Pt/
GC, and (c) Mn/Pt/CNT-GC electrodes in 0.3M FA (pH = 3:5). Frequency range from 10mHz to 100 kHz.
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here that the charge under the CO oxidation peak (QCO)
reflects the amount of CO adsorbed at lower potentials and
so can give a picture about the degree of surface poisoning.
Two observations were clear after modifying the Pt/GC
electrode with nano-MnOx (MnOx/Pt/GC electrode,
Figure 6(b)); the first observation was that the QCO was
almost the same for the Pt/GC and the MnOx/Pt/GC elec-
trodes (1.10 and 1.09mC, respectively, see Table 3) which
suggested that the geometric enhancement, responsible for
retarding the CO adsorption at the Pt surface, did not exist
[43–45]. The second observation was starting the CO oxida-
tion at the MnOx/Pt/GC electrode at lower potentials (ca.
170mV negative shift) compared with the Pt/GC electrode.
This behavior highlighted the effectiveness of the modifica-
tion with nano-MnOx and also concluded that such
enhancement arose mainly from the modification of the
electronic properties of the Pt surface by weakening the Pt-
CO bond and thus facilitating the oxidative removal of
poisoning CO. [43–45]. This, fortunately, supported the
mechanism of enhancement (faster reaction kinetics via a
lower Rct) previously proposed from Figure 5. Yet, the role
of MWCNTs was not detected, but it will be when looking
for the CO stripping curve obtained at the MnOx/Pt/
MWCNT-GC electrode (Figure 6(c)). Fascinatingly, at the
MnOx/Pt/MWCNT-GC electrode (Figure 6(c)), the QCO
almost disappeared (ca. 0.01 mC). This time, the geomet-
ric enhancement was behind such a huge decrease in the
amount of adsorbed CO after the modification with
MWCNTs. As reported previously, MWCNTs can facili-
tate the deposition of well-dispersed, nonagglomerated
nano-Pt (as in our case, Figure 2(a)) that assisted in
retarding the CO adsorption at the Pt surface [12, 22].
This is beside its high electronic conductivity, high corro-
sion resistance, and good structural, mechanical, and
chemical stability [46].

4. Conclusion

The sequential electrodeposition of nano-Pt and nano-
MnOx, respectively, at a GC electrode modified with
MWCNTs has been carried out aiming to develop a novel
anodic catalyst for EOFA. The electrocatalytic activity, sta-
bility, and mechanism of enhancement of the best modified
electrode (MnOx/Pt/MWCNT-GC) were discussed and
compared to the other modified electrodes (Pt/GC and
MnOx/Pt/GC). Ip

d/Ipind, Ipd/Ipb, Eonset, Rct, andQCO values
supported that the MnOx/Pt/MWCNT-GC electrode exhib-
ited the highest electrocatalytic activity and stability toward
EOFA. The mechanisms of enhancement by were thought
to come mainly from both electronic (by the modification
with nano-MnOx) and geometric (by the modification with
MWCNTs) effects.
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