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Abstract

Nanobodies are the smallest known antigen-binding molecules to date. Their small size, good tissue penetration, high stability
and solubility, ease of expression, refolding ability, and negligible immunogenicity in the human body have granted them
excellence over conventional antibodies. Those exceptional attributes of nanobodies make them promising candidates for
various applications in biotechnology, medicine, protein engineering, structural biology, food, and agriculture. This review
presents an overview of their structure, development methods, advantages, possible challenges, and applications with special
emphasis on infectious diseases-related ones. A showcase of how nanobodies can be harnessed for applications including
neutralization of viruses and combating antibiotic-resistant bacteria is detailed. Overall, the impact of nanobodies in vaccine
design, rapid diagnostics, and targeted therapies, besides exploring their role in deciphering microbial structures and virulence
mechanisms are highlighted. Indeed, nanobodies are reshaping the future of infectious disease prevention and treatment.
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Introduction

The discovery of monoclonal antibodies (mAbs) has sig-
nificantly influenced the field of biological industries. This
was implemented by Orthoclone, the first Food and Drug
Administration (FDA) approved mAb which has a crucial
role in preventing rejection in organ transplantation (Starzl
and Fung 1986). Since then, an enormous number of mAbs
have been well-established and marketed for their benefi-
cial clinical applications including targeted treatment and
enhanced therapeutic precision. However, mAbs use was
restricted owing to the sophisticated structure and large size
which affect their binding specificity, tissue penetration,
and clearance time in certain diseases (Buss et al. 2012).
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Additionally, the synthesis and production of mAbs are
costly and time-consuming.

Coincidence plays a vital role in most of the scientific
breakthroughs and the same narrative transpired with the
first observation of a peculiar antibody molecule that later
became a defining milestone in history, currently known as
nanobodies (Nbs). In 1993, the Hamers’ lab serendipitously
discovered naturally occurring heavy-chain antibodies in the
serum of the camel (Hamers-Casterman et al. 1993). Later
in 1995, Greenberg and co-workers detected single-domain
antibodies from nurse sharks (Ginglymostoma cirratum)
(Greenberg et al. 1995). These molecules differ from their
conventional ones in their composition which includes only
the heavy-chain variable dimers while missing their light-
chain counterparts. Nevertheless, they possess an extensive
antigen-binding repertoire.

Nanobodies (Nbs) “also referred to as single-domain
antibodies (sdAb)’’ are the antigen-binding molecules engi-
neered from the camelid or sharks heavy chain antigen-bind-
ing domain that are called the camelid variable heavy-chain
region (VHH) and immunoglobulin new antigen receptor
(VNAR), respectively (Schrankel et al. 2019). While the
human IgG immunoglobulin weighs ~ 150 kDa, the heavy-
chain antibody weighs ~80 to 90 kDa, and the derived Nbs
are~12 to 15 kDa (Pillay and Muyldermans 2021; Vincke
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and Muyldermans 2012). They are one-tenth the size of a
normal antibody (Schrankel et al. 2019), making their pro-
duction and utilization far more applicable. They also pos-
sess low immunogenicity owing to their small size, which
is around 110 amino acids (~4.4 nm high; ~2.5 to 2.8 nm
diameter) (Cortez-Retamozo et al. 2004; Sanchez-Garcia
et al. 2021). Moreover, Nbs can bind to embedded epitopes
that are not accessible to complete antibodies and have a
greater affinity and selectivity in targeting the active sites of
enzymes and receptors. It is worth noting that Nbs exhibit
remarkable stability, demonstrated by their ability to with-
stand some drastic conditions of pH, pressure, and tempera-
ture while maintaining their antigen-binding capacity. They
can tolerate extreme pHs (pH 3.0-9.0), and high pressure
(500-750 MPa) (Jov¢evska and Muyldermans 2020). Nbs
are also known to exhibit long shelf-life with high storage
stability at different temperatures; 4 °C and -20 °C for long
storage periods (months), and 37°C for shorter ones (weeks).
Moreover, some studies reported their heat tolerance to
higher temperatures (60—80 °C). Yet improper Nbs refold-
ing by heat denaturation represents a great concern. Fur-
thermore, Nbs demonstrate high stability against proteolytic
enzymes and some chemical denaturants like urea (De Vos
et al. 2013; JovCevska and Muyldermans 2020). On another
front, the specificity of the Nb can be generated from cell-
based microbial expression systems such as Escherichia coli,
yeasts, or cell-free platforms (using ribosomes) (Schrankel
et al. 2019). This simple yet critical approach can have a
significant effect on the reduction of Nbs production costs.

Nbs have already been used in diverse fields and par-
ticularly notable is the first Nb approved for a therapeutic
indication in 2018, named Caplacizumab, which is used for
acquired thrombotic thrombocytopenic purpura (Duggan
2018). Nbs are tested in a wide range of prospective inno-
vations, such as investigating the viability of the VHHs in
phage display, testing its potential in shampoos for dandruff
reduction and introducing the first evidence of Nbs inhibit-
ing the cell-free and cell-to-cell transmission in hepatitis C
infection (Dolk et al. 2005; Tarr et al. 2013). In addition,
Nbs are also tested to serve in identifying tumor cells by
targeting human growth factor cell receptors (HER2) and
carbonic anhydrase IX (CAIX) (Keyaerts et al. 2016; Kija-
nka et al. 2016). The wide array of possible revolutionary
applications offered by these small biomolecules will inevi-
tably boost Nbs utilization. In the current review, the Nbs’
structure, methods of production, advantages, disadvantages
and potential applications will be discussed with emphasis
on their potential role in infectious diseases.

The structure of different forms of antibodies

To properly understand the distinctiveness of Nbs, a struc-
tural comparative overview of Nbs, conventional antibodies,
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and the parent heavy chain antibodies is presented (Fig. 1)
and discussed as follows.

The binding specificity of the full-length antibodies is
determined by variable regions in their heavy (VH) and
light chains (VL). The two light chains are composed of a
variable domain (VL) and a constant domain (CL). The VH,
CHI, hinge, CH2, and CH3 domains make up the two heavy
chains (VH), with the CH1 domain serving as a key connec-
tion between the heavy and light chains (Muyldermans 2013;
Wanner et al. 2021). Collectively, they generate a diversity
of at least 10" B-cell receptors (BCRs) in humans (Mitchell
and Colwell 2018). The linkage of the CH2 and the CH3
makes the crystallizable fragment (Fc) portion of the anti-
body while the antigen-binding (Fab) region is composed
of the heavy chain's outer domains (CH1 & VH) as well
as the light chain's variable and constant domains (CL &
VL). The pairing of the VH-VL by an oligopeptide gener-
ates the smallest functional antigen-binding unit, known as
the single-chain fragment variable (scFv), with a size of ~30
kDa that can be created from the full-size antibodies (Muyl-
dermans 2013). However, unlike VHHs, scFvs have lower
affinities, reduced half-life, and stability, as well as lower
thermostability when compared to their parent antibodies.
As aresult, there is a higher probability of aggregation and
subsequent risk of immunogenicity (Bates and Power 2019).

The camelid heavy-chain antibodies on the other hand
lack both the light chains and the CH1, which gives them
an advantageous small size, with a molecular weight of ~90
kDa. The dromedary heavy-chain antibodies carry only the
VHH segment, hinge, CH2 and CH3 fragments with a direct
connection of the rearranged VHH exon to the hinge region
belonging to one of two types of hinge isotypes: long (IgG2)
or short (IgG3), referring to the fraction's hinge length. In
this case, antigen recognition is through the variable domain
of the heavy chain. Accordingly, the compact design of Nbs
allows better adaptability for hidden targets (Arbabi-Ghah-
roudi 2017; Muyldermans 2013). Similarly, the antibodies
devoid of light chains found in cartilaginous fish consist
of one variable domain followed by five constant domains
[(V-NAR)-5(C-NAR)] (Deftar et al. 2009; Zielonka et al.
2015).

The VHHSs molecules derived from the camelid heavy
chains restrict the antigen binding to a single domain of
about 110 amino acids. These molecules comprise three
hypervariable sections (HV) that localize the sequence vari-
ation of the variable domains (V) and are surrounded by
a conserved framework (FR). Nine p-sheet strands (A-B-
C-C'-C'-D-D-E-F-G) make up the folded variable domain,
which is arranged into four-stranded -sheets and five-
stranded p-sheets joined by loops and a conserved disulfide
bond. The HV regions are arranged into three loops (HI,
H2, and H3) that connect the stranded p-sheets. A continu-
ous surface is formed by the cluster at the N-terminal that



World Journal of Microbiology and Biotechnology (2024) 40:209

Page30of20 209

CH3J CH3

lgG scfv Camelid heavy Camelid heavy New or nurse shark
~ 150 kDa ~30 kDa chain antibody chain antibody antigen receptor
(IgG2) (IgG3) (IgNAR)
A B
~92 kDa ~90 kDa ~150 kDa

b

Fig. 1 Comparison of Nbs’ structure to other antigen-binding moie-
ties. A schematic diagram showing the difference between Nbs and
other antigen-binding moieties. A Conventional antibody with its
heavy chain (VH) (pink color) and light chain (VL) (gray color). B
Single chain fragment variable (scFv), which contains a pair of VH
and VL domains connected by an oligopeptide bond. C Three differ-
ent heavy chain antibodies; the camelid heavy chains contain VHH

is complementary to the surface of the epitopes or antigens
(paratope) and this area is referred to as the complemen-
tarity-determining region (CDR). The sequence within the
loops is highly variable, but the extent of the variation is
limited except for the H3 loop (CDR3) (Muyldermans 2013).
Controversially, the conventional antibodies were thought to
have wider diversity compared to Nbs as the latter have para-
topes of smaller size. However, this notion was disproven
by the large H1 loop (CDR1) that is responsible for antigen
recognition and was found to be longer than those in the
variable domain of the conventional antibody’s heavy chain,
subsequently serving in largening the paratope size and
exhibiting diverse loop architectures (Nguyen et al. 2000).
Within the conserved FR2, the highly conserved hydropho-
bic amino acids normally found in the full-size antibodies,

Single domain antibody fragments
(sdAb) Nanobody (Nb)

~12-15 kDa

CH3
CH4

C

segment, hinge, CH2 and CH3 with long (IgG2) or short hinge
(IgG3), and the shark heavy chain containing one variable domain
and five constant domains. The three heavy chains exhibit single
domain antibody (sdAb). The sdAb is formed of three hypervariable
sections surrounded by nine f-sheet strands connected by disulfide
bond

are replaced in VHHs with more hydrophilic amino acids,
rendering them more soluble (Asaadi et al. 2021; Muylder-
mans 2013).

The VNAR domains, on the other hand, are members of
the immunoglobulin’s superfamily and hence they have a
B-sandwich structure. The VNARs lack the hinge region yet
there is a wide space for interacting with multiple epitopes
which is enhanced by the dimerization between C1 and C3
domains. Unlike the mammalian variable domain coun-
terpart, the f-sandwich fold in the VNAR only has eight
strands instead of ten. With a size of roughly 11-12 kDa, the
VNARSs are believed to be the smallest antibody-like anti-
gen-binding domains known in the animal kingdom (Stan-
field et al. 2004; Zielonka et al. 2015). This structure results
in fewer antigen-binding loops (CDR1 & CDR3) compared
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to antibodies, but the elongated CDR3 compensates for
this (Feige et al. 2014; Konning et al. 2017; Zielonka et al.
2015). Still, the VNARSs' diversity, like that of the VHHs, is
predominantly seen in the CDR3 sequences. Two cysteines
in FR1 and FR3 form a stabilizing disulfide bond, and addi-
tional ones in CDR3 can provide extra stability (English
et al. 2020; Feige et al. 2014; Feng et al. 2019).

In conclusion, compared to the standard antibody bind-
ing sites, antigen-binding sites in VHHs and the VNARs
are smaller in terms of molecular surface area and diam-
eters. They differ from the typical canonical structures of
the full-length antibody in their non-canonical CDR1 and
CDR2 structures, as well as an elongated CDR3 loop length
distribution. However, they have similar amino acid com-
positions and as a group they appear to be no longer in the
distance measured from the CDR base to the tip than the
conventional antibodies (Henry and MacKenzie 2018). For
protein-binding, rather than operating six-loop configura-
tions like typical antibodies, Nbs only use their three CDR
loops. They exert their expanded CDR3 loop to penetrate
the active site or the CDR2 loop in circumstances where the
Nb's standard CDR3 loop is insufficient to protrude to the
antigen. (Desmyter et al. 2002; Henry and MacKenzie 2018;
Sela-Culang et al. 2013).

Production of nanobodies

The production of sdAb fragments traditionally entails the
amplification of VHH or VNAR gene segments at an afford-
able low cost. They are then cloned into a display system,
whether it is a bacteria, yeast, phage, or ribosome, followed
by the generation of a large collection of clones "library"
accompanied by biopanning of the high-affinity antigen-
specific clones and their retrieval (Fig. 2).

Inherently, for immune library generation, the stages
of Nbs production generally commence by immunizing
healthy young adults including dromedaries, camels, 1la-
mas, alpacas, or sharks with a protein cocktail to gener-
ate a library of at least 10°~10® individual clones (Miiller
et al. 2012; Muyldermans 2021b). Over the course of a few
months, the animals can be routinely injected with the target
immunogen. Since the used animals are outbred, it is recom-
mended that more than one is immunized at this early stage.
Each animal is thought to elicit a different immune response,
with a subsequent large repertoire of Nbs from which the
best-performing clone is selected (Muyldermans 2021b).
Affinity maturation and class switch recombination are
induced by deliberate repeated immunization which leads
to boosting the odds of detecting VHHs with the targeted
functional features that may not be existent in naive libraries
(Ingram et al. 2018). Extraction of mRNA is done from the
blood acquired after the immunization step, then the mRNA
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is transformed into cDNA and utilized to amplify the VHH
gene segments (Muyldermans 2021b). Constructing libraries
through animal immunization has some limitations such as
being time-consuming and costly, and it may also generate
redundant subpopulations of certain antigens. Additionally,
when it comes to non-immunogenic molecules like RNA or
DNA, which fail to elicit an immune response, they are not
the best choice (Muyldermans 2021b; Sabir et al. 2014).

Another significant limitation of the immunization librar-
ies is the limited target space for sensitive proteins. Targets,
such as many human membrane transporters, easily unfold
upon injection primarily due to the adjuvants used and the
dromedary's high body temperature. Additionally, unless
their affinities are extremely high, non-covalent ligands dis-
sociate from the protein shortly after injection, making it dif-
ficult to promote target conformations (Zimmermann et al.
2018). It is worth noting that immunization requires access
to animal facilities, and this may not always be feasible.
On another front, and from an ethical point of view, animal
usage to that end is strongly discouraged for compounds
that are poisonous, contagious, or harmful to both animals
and environment. Hence, steering directions are currently
implemented towards the use of other Nb repertoires such
as naive and synthetic libraries which do not require animals
to be immunized against bacteria, viruses, or toxoids (Gray
et al. 2016).

As for the construction of a naive library, a pool of blood
from multiple non-immunized animals is required. This
method has the advantage of being rapid and the ability to
recover a VHH repertoire that should at least acquire the size
of 10°~10'! clones, with the added benefit of being more
diversified (Muyldermans 2021b; Sabir et al. 2014). On the
other hand, taking up to 10 L of blood to build a diversified
naive Nb library with around 10'° different VHH clones is
tedious (Muyldermans 2021b). However, the procedure has
been found to yield over-adequate Nb libraries of a size of
107 with as little as 23 mL, from which high-affinity Nbs can
be extracted (Sabir et al. 2014).

Synthetic libraries are the third source for Nbs and
they can provide access to bigger repertoires without the
benefits of target immunization and affinity maturation
(Ingram et al. 2018). A stable and well-expressed Nb scaf-
fold, preferably with a crystal structure, is usually chosen
for the construction of a synthetic library without the need
to draw blood from animals (Muyldermans 2021b). Syn-
thetic libraries have a diverse clone size of 10°~10' and
often exhibit a single shape and are randomized in only
one region of their surface (Muyldermans 2021b; Zim-
mermann et al. 2018). A single or a few Nbs with desir-
able biochemical features are randomly selected and their
sequences are amplified by PCR (Muyldermans 2021b).
Following that, the PCR products are ligated into phage or
ribosome display, or both and three synthetic Nbs selection
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Fig.2 Nanobodies generation process. A schematic diagram for the different generation approaches of Nbs including immune, naive, and syn-

thetic libraries. The diagram is partially generated using BioRender

platforms tailored to membrane protein targets are then
engineered with varying CDR3 loop lengths and configu-
rations. The Nb library is displayed using both phage and
ribosome systems and created by analyzing many depos-
ited camelids VHHs structures (Zimmermann et al. 2018).

It is also worth noting that Nb libraries can be developed
from human origins through phage-display technology under
the hypothesis that certain VH framework sites can compen-
sate for the loss of the light chain, resulting in soluble human
Nbs (Wu et al. 2020). A previous study reported cloning of
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17 human germline immunoglobulin heavy chain variable
region (IGHV) alleles, and expressing them in E. coli, and
then characterizing their properties, along with a camelid Nb
as a control. Another previously experimented approach is
that fully human single-domain antibodies were obtained by
grafting the complementarity determining regions (CDRI1,
CDR?2, and CDR3) from naive libraries into the FR regions
of a human germline immunoglobulin VH variable region
allele (Wu et al. 2020). This technology promises antibodies
derived entirely from human sequences which exhibit less
immunogenicity compared to camelid or humanized Nbs,
leading to improved safety and efficacy for human use.

Nbs can be expressed in both prokaryotic and eukaryotic
systems, such as E. coli, S. cerevisiae, and Pichia pastoris.
The most common approach for generating Nbs is to pro-
mote their secretion in the P. pastoris or the E. coli peri-
plasm (Chen et al. 2019; de Marco 2020). The periplasm's
oxidizing conditions promote the formation of disulfide
bonds, which help in stabilizing the Nb structure. After
an osmotic shock step to permeabilize the bacterial outer
membrane, the folded binders are normally recovered in the
supernatant and affinity purification is used to recover the
Nbs (de Marco 2020). It is also noted that upon precipita-
tion of the highly temperature-sensitive E. coli proteins, heat
incubation of the supernatant has been successfully used to
purify the comparatively thermal-resistant VHHs (Olichon
et al. 2007). Although periplasmic extraction has its benefits
in terms of protein folding, it also has limitations, such as
aggregation and low yields of proteins. The latter could be
due to a number of reasons, including the secretion system
saturation, the absence of adequate chaperone machinery
that can inhibit improper folding at high expression rates,
high proteolytic activity, and a lengthy-expression technique
(Pleiner et al. 2015).

Advantages of nanobodies

In terms of size, the single variable segment of the heavy
chain antibodies is the smallest functional antigen-binding
domain natively created by the adaptive immune system
(Muyldermans 2013). The myriad uses of Nbs can be attrib-
uted to their exceptionally small and structurally convenient
nature that in turn accounts for their fast tissue penetration
and short half-life. In terms of antigen-binding capabilities,
the diversity in the VHHs and VNAR loop structures dra-
matically expands the repertoire of the antigen-binding sites.
This diversity also significantly affect their access to and
interaction with more antigen’s clefts and buried epitopes,
known as cryptic antigenic regions which are not usually
accessible by conventional antibodies (Desmyter et al.
1996; Stanfield et al. 2004; Stijlemans et al. 2004). Another
remarkable feature of Nbs’ antigen-binding paratopes is
their ability to adopt flat, concave and convex configurations

@ Springer

which easily favors their use against folded proteins and
recessed epitopes (Chaikuad et al. 2014; Custddio et al.
2020; De Genst et al. 2006; Henry and MacKenzie 2018;
Muyldermans and Smider 2016). Furthermore, it is assumed
that sdAbs can access holed sites on membrane proteins
including ion channels and G protein-coupled receptors
(Henry and MacKenzie 2018; Wei et al. 2011).

With regard to their autonomous behavior, Nbs serve
as effective building blocks for multi-domain composi-
tions, such as bivalent or multivalent to improve affinity, or
bispecific to cross-link independent antigens (Muyldermans
2021a). Since VHHs are monomeric in nature, they do not
cluster in multimers like scFv molecules. Furthermore, con-
sidering their high solubility and stability, Nbs can be easily
fused to each other without the mispairing and solubility
challenges that face the scFv dimers and multimers (Ban-
nas et al. 2017). Moreover, varying the valency of the Nb
domains that target tumors can strengthen the cell-killing
and downregulation effect on certain tumor cells (Bannas
et al. 2017; Oliveira et al. 2010; Sadeghnezhad et al. 2019).
To achieve this, linkers can be used to create multivalent
or multispecific configurations of Nbs. Also, fusion with
albumin or short peptide tags can be used to extend the
half-life or facilitate their purification and detection (Ban-
nas et al. 2017; Beirnaert et al. 2017; Zupancic et al. 2021a,
b). Moreover, Nbs have been successfully fused with larger
proteins called megabodies. The subsequent binding of these
megabodies to smaller proteins, guided by the Nb specific-
ity, could convert them into larger protein complexes. This
allows their structural analysis by cryo-electron microscopy,
which is otherwise not the best strategy for solving the struc-
ture of low-molecular weight proteins (Masiulis et al. 2019).

From the crystallization ability perspective, Nbs are easy
to crystallize due to their small size. They also have several
properties that aid in the crystallization of harsh proteins
including;(i) the ability to block domain movement, (ii) the
ability to hide mobile polysaccharides bounded proteins, and
(iii) the ability to insert in clefts or between interfaces. Those
properties stabilize loops or large complexes and assist in
the solubilization of proteins with limited solubility or even
provide beneficial crystal contacts for membrane proteins
(Desmyter et al. 2015). Practically, Nbs significantly helped
in the stabilization of G protein-coupled receptors in their
active-state conformations (Steyaert and Kobilka 2011).

Finally, an attractive advantage of Nbs is their ability to
cross the blood—brain barrier (BBB), unlike regular anti-
bodies. This makes them unique potential diagnostic and
therapeutic tools for the central nervous system (Li et al.
2012). Nbs are also showing potential as screening tools via
genetic modifications that links them to fluorescent proteins
and thus could be used as biosensors or to trace target anti-
gens intracellularly in living cells (Rothbauer et al. 2006).
They also present a detailed depiction of immune specificity
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in-display libraries and are easily adaptable to high-through-
put screening (Gonzalez-Sapienza et al. 2017; Rahbarizadeh
et al. 2011). Being an efficient diagnostic tool, Nbs became
among the best tracers for non-invasive imaging for either
positron emission tomography/computerized tomography
(PET/CT) or single-photon emission computerized tomog-
raphy (SPECT) imaging.

Since the original patent on Nbs expired in 2013 for
Europe and 2017 for the US (Arbabi-Ghahroudi 2017), the
biotechnological, academic, industrial, and therapeutics
communities have been pushing to commercialize Nbs.
Currently, the number of studies on unique and inventive
compositions and applications of Nbs is rapidly increasing.

Applications of Nbs in infectious diseases

Among the broad spectrum of applications in which Nbs
have been successfully involved, the infectious disease
domain comes with a big and impactful share. The devel-
oped Nbs for this purpose could be categorized into three
main groups: therapeutic/prophylactic, diagnostic, and func-
tional and structural elucidation tools.

Nbs as therapeutic and/or prophylactic tools in infectious
diseases.

This is the largest category in which multiple Nbs have been
tested and evaluated against different types of pathogens. For
example, many Nbs have been tested to act as neutralizing
agents for viral infections including foot & mouth disease
virus (FMDV) (Harmsen et al. 2008), human immunode-
ficiency virus (HIV-1) (Forsman et al. 2008; Lutje Hulsik
et al. 2013; McCoy et al. 2012), influenza A virus (Wei et al.
2011), the Middle-East respiratory syndrome coronavirus
(MERS-CoV) (Wrapp et al. 2020), poliovirus (Strauss et al.
2016), rabies virus (Terryn et al. 2016), respiratory syncytial
virus (RSV) (Rossey et al. 2017), rotavirus (Maffey et al.
2016), and lately the Covid-19 causing virus (SARS-CoV-2)
(Chen et al. 2021; Schoof et al. 2020; Yang et al. 2023).
Among the strategies through which Nbs were used to
treat infections is to target key moieties within the patho-
gen to block its pathogenesis. For example, to interfere with
the ability of Campylobacter to colonize the host, Nbs were
tested by targeting an outer membrane protein and the fla-
gella (Vanmarsenille et al. 2018). Other Nbs targeted the F4
fimbriae of E. coli (Harmsen et al. 2005), the Salmonella
enterica FilC flagellin (Huen et al. 2019), and the Strepto-
coccus mutans adhesin (Kriiger et al. 2006). Another group
of Nbs were developed to target the toxins produced by
some pathogens so that they block their toxic effects on the
host’s cells. This category included Nbs against the Bacillus
anthracis toxin (Shali et al. 2018), the Clostridium botuli-
num neurotoxin (Dong et al. 2010; Mukherjee et al. 2012),

the C. difficile toxin (Hussack et al. 2018), the E. coli heat-
labile toxin (Harmsen et al. 2009a, b) and the Staphylococ-
cus aureus Toxic-Shock Syndrome Toxin (TSST-1) (Adams
et al. 2009). Moreover, Nbs were generated to target other
virulence factors such as the type III secretion system of
Pseudomonas aeruginosa accordingly blocking the transfer
of toxins to the host’s cell (De Tavernier et al. 2016), the
urease enzyme of Helicobacter pylori inhibiting this key
enzyme for the survival of the pathogen within the host
(Fouladi et al. 2019), and the internalin B (InIB) of Lis-
teria monocytogenes blocking bacterial invasion (King et al.
2018).

In viral pathogens, Nbs targeted surface structures to
block entry to the host cell such as the Ebola envelope glyco-
protein (Liu et al. 2017), the hepatitis B virus envelope pro-
tein S (Serruys et al. 2009), the hepatitis C E2 glycoprotein
(Tarr et al. 2013), and others. Also for the viral pathogens,
Nbs targeted viral replication as in the case of the Ebola
nucleoprotein (Darling et al. 2017), the HCV RNA-depend-
ent RNA polymerase (NS5B) (Thueng-in et al. 2012), and
the nucleoproteins of the influenza A (Hanke et al. 2016) and
the Marburg virus (Darling et al. 2017).

Among the therapeutic applications of Nbs in infectious
diseases is their use for targeted drug delivery as has been
demonstrated against Herpes simplex virus 2, where Nbs
against glycoprotein D conjugated to the cytotoxic domain of
the P. aeruginosa exotoxin acted as immunotoxins and were
very effective in killing the virus-infected cells (Geoghegan
et al. 2015). Also, Nbs directed against B-lactamases such as
TEM-1 and Bcll successfully inhibited the enzymatic activ-
ity of these enzymes and rendered the resistant pathogen
susceptible to B-lactam antibiotics (Conrath et al. 2001).

Nbs as diagnostic tools in infectious diseases.

Another area in which Nbs are used actively is in the diagno-
sis of infectious diseases. Many Nbs targeted against moie-
ties in the pathogens have been considered for diagnostics
purposes. For example, the type 2 NS1 protein of the Den-
gue virus (Fatima et al. 2014), ORF2 of the hepatitis E virus
(Arce et al. 2023), HIV capsid proteins (Helma et al. 2012),
and other viral targets. In addition, Nbs are also used for
the diagnosis of bacterial pathogens including Acinetobacter
baumannii (Rasoulinejad and Gargari 2016), Brucella spp.
(Abbady et al. 2011), E. coli (Salhi et al. 2020), S. aureus
(Hu et al. 2021), and Vibrio cholerae (Goldman et al. 2006).

Nbs as structural and functional elucidation tools
in infectious diseases.

Another application of Nbs in infectious diseases is the

use as tools to elucidate the crystal structure of a patho-
gen-related protein or investigate its function. To this end,

@ Springer
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multiple Nbs have been developed. For instance, Nbs against
the gp120 of HIV-1 were used to elucidate both its function
and structure (Chen et al. 2010), while the function of the
Nef protein of the same virus was studied using another Nb
(Bouchet et al. 2011). In the case of bacterial pathogens, Nbs
were used for structural biology studies of the MazEF toxin/
antitoxin of E. coli (Lah et al. 2003), and that of the EpsJ
pseudopillin of V. vulnificus (Lam et al. 2009).

An updated comprehensive list of the diverse applica-
tions of Nbs against viral and bacterial infectious diseases
is presented in Tables 1 and 2, respectively.

The majority of the reported Nbs that are listed in Table 1
are directed towards viral targets, which could be attributed
to the Nbs advantages discussed earlier, especially their high
accessibility and penetration capabilities. With the global
concerns associated with the SARS-CoV-2 pandemic in the
previous three years, there was a plethora of attempts to face
this threat using Nbs platforms. Over fifteen studies, targeted
engineered Nbs showed promising results in neutralizing
the SARS-CoV-2 virus and suppressing mutational escape
in different pre-clinical animal models. In addition, several
Nbs studies have contributed to the ongoing efforts to find a
cure for HIV infections using multiple approaches.

Compared to viral antigens, the application of Nbs in
dealing with bacterial pathogens is still limited (Table 2).
Up to date, the applications of using multiple Nbs have been
directed to the neutralization of the botulinum neurotoxin. It
is an attractive target for the development of monospecific
antibodies owing to its extreme lethality and having the least
LDy, value among known toxins. It is worth mentioning that
the only currently FDA-approved treatment for botulism is
an equine-driven polyclonal antibody cocktail shot (Tomic
et al. 2021). Additionally, E. coli with its diverse pathogenic
potentials attracted attention for the development of thera-
peutic Nbs either for blocking attachment (Harmsen et al.
2005) or toxin neutralization (Harmsen et al. 2009a, b).

On another front, very few attempts have been imple-
mented in the production of anti-fungal Nbs. Most of the
studies aimed at detecting food product contamination with
mycotoxins, specifically the aflatoxin B, (He et al. 2022;
Salvador et al. 2022). Recently, Liu et al (2023) designated
Nb-natamycin conjugates that were specific to the Asper-
gillus fumigatus B-glucan. A. fumigatus is known to be a
common causative agent of fungal keratitis, an inflammatory
eye disease affecting the cornea. These conjugates success-
fully attenuated the virulence of A. fumigatus, and favorably
modulated the inflammatory responses in fungal keratitis
(Liu et al. 2023). Earlier, the same group described another
Nb that is specific to the mammalian pattern-recognition
receptor for fungi dectin 1. The anti-dectin 1 Nb alleviated
the clinical symptoms of fungal keratitis in a mouse model,
and this was attributed to the reduced expression of inflam-
matory cytokines IL-1f and IL-6 (Liu et al. 2022).

@ Springer

Disadvantages of nanobodies

The Nbs technology has become successively incorporated
in a lot of therapeutic and diagnostic applications due to its
small size. However, Nb's small size accounts for its short
half-life by being rapidly eliminated by kidneys. This is
attributed to their low molecular weight (~ 15 kDa) which
is below the renal threshold for glomerular filtration (~ 50
kDa) (Ruggiero et al. 2010). Hence, their diminutive size
and thereby their short half-life accounts for some chal-
lenges or limitations for using Nbs in different therapeutic
fields such as screening and in vivo diagnosis applications.
One of these challenges is the high uptake and accumula-
tion of Nbs in the kidneys while being eliminated, which
in turn limits their use as in vivo imaging probes for kid-
ney screening along with some vicinity organs like the
pancreas (Schoonooghe et al. 2012). In addition, the bind-
ing capacity of some Nbs is altered after being conjugated
with either fluorophore or radioactive probes, for exam-
ple, the Nbs conjugated with chelators having gallium-68
(®8Ga) or zirconium-89 (3°Zr) for immuno-positron emis-
sion tomography (immunoPET) imaging. These radiola-
beled nanobodies may exhibit different features, including
affinity, size, structure, and pharmacokinetics. However,
site-directed conjugation and nanobody-engineering strat-
egies have been recently applied to demonstrate the effec-
tiveness, reliability, and safety of their use as molecular
imaging probes (Yang et al. 2022). Another challenge is
the low persistence of Nbs within the bloodstream due to
their rapid clearance which in turn hampers their uptake.
As aresult, only a negligible fraction of the administered
nanobody reaches the target sites, thereby hindering their
efficacy. This may account for the frequent administration
of Nbs along with using higher doses to maintain their
therapeutic level, however, this is not recommended for an
efficient therapeutic application. Further approaches seek
different strategies to prolong Nbs half-life by enhancing
their accumulation and pharmacokinetics either by Nbs
multimerization approach or by Nb-serum albumin con-
jugation approach (Jovéevska and Muyldermans 2020).

Lastly, due to the high homology between the camelid
germline IgV gene repertoire and its human counterparts,
with up to 95% in the case of the camelid IGHV family
III and its human FR counterpart, Nbs inherently pose a
low immunogenic profile, which allows for prolonged and
repeated administrations of Nbs in patients (Klarenbeek
et al. 2015). However, the generation of antibodies against
administered Nbs is possible and can be problematic, as
demonstrated in the aborted clinical trial with an anti-DRS
receptor nanobody (Papadopoulos et al. 2015). This sug-
gests that moderate humanization of Nbs sequences may
be beneficial in some cases.
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Table 2 Nanobodies directed against bacterial antigens

Bacteria

Target

Potential application of produced
Nb

References

Acinetobacter baumannii
Bacillus anthracis
f-lactam resistant pathogens

Brucella abortus
Brucella melitensis

Campylobacter

Clostridium botulinum

Clostridium difficile

Clostridium tetani

Escherichia coli

Helicobacter pylori
Listeria monocytogenes
Neisseria meningitidis

Pseudomonas aeruginosa

Salmonella enterica

Staphylococcus aureus

Streptococcus mutans
Vibrio cholerae

Vibrio vulnificus

Biofilm associated protein (Bap)
Protective antigen (PA) toxin
Peta-Lactamase (TEM-1 & Bcll)
Strain NalR

Strain Riv.1

Flagella

Major outer membrane protein
(MOMP)

MOMP & flagella
Botulinum neurotoxin

TcdA & TedB toxins

Tetanus toxoid & lysozyme
F4 fimbriae

Surface antigens
Heat-labile toxin
MazEF toxin/antitoxin system

Urease
Internalin B (InlB)
Lipopolysaccharide

PcrV of Type II secretion system
T3SS

FliC Flagellin

Toxic-Shock Syndrome toxin-
1(TSST-1)

Enterotoxin B

Streptococcal antigen I/IT adhesin
Cholera toxin

EpsJ pseudopilin

Immunoassay

Neutralization

f-lactamases inhibitor

Therapeutic, prophylactic, and/or
diagnostic purposes

Therapeutic, prophylactic, and/or
diagnostic purposes

Reducing colonization

Reducing colonization

Immunoprophylactic

Neurotoxin neutralization and/or
diagnostic purpose

Neutralization

Nb functional studies

Immunotherapeutic Inhibiting adhe-
sion to intestinal brush

Diagnostic & therapeutic purposes

Toxin neutralization

Structural biology & crystallogra-
phy

Enzyme inhibition

Prevention of bacterial invasion

Therapeutic purpose against sepsis

Blocking host cytotoxicity

Therapeutic purposes
Toxin neutralization

Immunoassay

Prophylaxis against dental caries

Immunoassay

Structural biology & crystallogra-
phy

Rasoulinejad and Gargari (2016)
Shali et al. (2018)

Conrath et al. (2001)

Abbady et al. (2011)

Abbady et al. (2011)

Riazi et al. (2013)
Vanmarsenille et al. (2017)

Vanmarsenille et al. (2018)

Conway et al. (2010), Dong et al.
(2010), Goldman et al. (2008),
Mukherjee et al. (2012), Thanong-
saksrikul et al. (2010), and Trem-
blay et al. (2010)

Andersen et al. (2016), Hussack et al.
(2018), and Yang et al. (2014)

Arbabi Ghahroudi et al. (1997)
Harmsen et al. (2005)

Salhi et al. (2020)
Harmsen et al. (2009a, b)
Lah et al. (2003)

Fouladi et al. (2019)
King et al. (2018)

El Khattabi et al. (2006)
De Tavernier et al. (2016)

Huen et al. (2019)
Adams et al. (2009)

Hu et al. 2021 and Sun et al. (2020)
Kiriiger et al. (2006)

Goldman et al. (2006)

Lam et al. (2009)

Despite of these challenges and limitations, the Nb tech-
nology still shows significant advantages over the conven-
tional antibody as an effective immunotherapy.

Conclusions

Nbs represent a very promising tool for a vast array of
biomedical applications owing to their superiority in terms
of small molecular size, modulative specificity, and their
physico-chemical properties that allow for easier down-
stream processing. The majority of current Nb applications

@ Springer

are focused on the fields of diagnostics, and structural biol-
ogy, being used as structural aids for troublesome proteins.
The recent surge in anti-viral development accelerated the
expansion in therapeutic Nb research, with many promis-
ing candidates designed to target viral infections. Anti-
bacterial and anti-fungal Nb candidates are still limited in
numbers and targets, which calls for future investigation
of their potential applications for this purpose. This could
be especially warranted in the post-antibiotic era, where
available antibiotics are failing to suppress extremely
resistant microbes.
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