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Abstract: Different parts of Cynara scolymus L. and their green synthesized eco-friendly silver nanopar-
ticles (AgNPs) were screened for their cytotoxicity and apoptotic activity. Results showed that flower
extract AgNPs exhibited more potent cytotoxicity compared to the normal form against PC-3 and
A549 cell lines with IC50 values of 2.47 µg/mL and 1.35 µg/mL, respectively. The results were com-
pared to doxorubicin (IC50 = 5.13 and 6.19 µg/mL, respectively). For apoptosis-induction, AgNPs
prepared from the flower extract induced cell death by apoptosis by 41.34-fold change and induced
necrotic cell death by 10.2-fold. Additionally, they induced total prostate apoptotic cell death by a
16.18-fold change, and it slightly induced necrotic cell death by 2.7-fold. Hence, green synthesized
flower extract AgNPs exhibited cytotoxicity in A549 and PC-3 through apoptosis-induction in both
cells. Consequently, synthesized AgNPs were further tested for apoptosis and increased gene and
protein expression of pro-apoptotic markers while decreasing expression of anti-apoptotic genes.
As a result, this formula may serve as a promising source for anti-cancer candidates. Finally, liquid
chromatography combined with electrospray mass spectrometry (LC-ESI-MS) analysis was assessed
to identify the common bioactive metabolites in crude extracts of stem, flower, and bract.

Keywords: Cynara scolymus L.; biomedical implementations; cytotoxic; green synthesis; silver nanoparticles

1. Introduction

Cynara scolymus L. is a perennial plant belonging to the family Compositae, and it
grows in a big head from edible buds with multiple triangular scales of 8–15 cm in di-
ameter. It is cultivated in the Mediterranean region for the fresh, immature flower head.
As a vegetable, it is consumed as fresh, tinned, or frozen [1,2]. The plant is of a great
nutritional value as it accumulates a considerable amount of folic acid, essential amino
acids, and fatty acids, of which the most plentiful are the n-6 linoleic and palmitic acids [3].
C. Scolymus extracts have long been used in folk medicine for their great choleretic and
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hepatoprotective properties in addition to their efficiency to ameliorate bacterial infection,
arteriosclerosis, and diabetes symptoms [4–6]. Chemically, Cynara scolymus L. compiles a
precious secondary metabolite to which the pharmacological activities are attributed. These
compounds include phenolic acids, namely chlorogenic acid, cynarin, and caffeic acid;
bitter sesquiterpene lactones (for example, cynaropicrin and grosheimin); flavonoids (lute-
olin, luteolin-7-O-rutinoside, luteolin-7-O-β-gluco-pyranoside, apigenin-7-O-rutinoside);
and cynarasaponins and inulin [7,8]. As a result, the plant has the potency to be exploited
in phytopharmaceutical applications. Recent advances in drug manufacture have led
to evolution of various herbal drug delivery systems [9]. The revival of interest in the
nanotechnology arena has led to new developments in terms of nanoparticle biosynthesis.
The biosynthesis approach is preferable over physiochemical synthesis methods owing to
its biocompatibility and cost-effectiveness and also because it is ecofriendly. The biolog-
ical technique is one of the most widely used methods in the green synthesis of metallic
nanoparticles, specifically silver nanoparticles (AgNPs). More recently, it has been proved
that the plant-mediated green synthesis of AgNPs has grown into a novel branch of nan-
otechnology. Green synthesis is a novel approach which overcomes the limitations of
classical physiochemical methods by utilizing a wide variety of natural herbs which are
biocompatible and nontoxic [10]. Generally, AgNPs are nanoparticles of silver atoms having
a size distribution range between 1 and 100 nm and possessing unique electrical, magnetic,
and optical characteristics having broad potential applications [6]. Although different noble
metals have been employed for a variety of uses, AgNPs have been concentrated on for
possible uses in the detection and treatment of cancer. There are two main requirements
for green synthesis of AgNPs. The first factor is the dissolving of the silver metal ion and
secondly a reducing biological agent should be included in the synthesis process. In most
cases, reducing agents in the cells work as a stabilizing and capping agent and so there is no
requirement to add external capping stabilizing agents [11]. Because the physicochemical
parameters of AgNPs have a substantial impact on their biological behavior in vivo, precise
characterization should be performed after synthesis. It is vital to evaluate the manufac-
tured nanoparticles prior to administration in order to use the maximum performance of
each nanoparticle safely and without any biological issues. AgNPs’ biological and cytotoxic
activity is primarily influenced by a number of variables, such as the size distribution, par-
ticle shape, rate of dissolution, and kind of reducing agents utilized in the synthesis of the
AgNPs. In addition, they affect cellular uptake and internalization, biological distribution,
and biological barrier penetration. Therefore, accurate design and synthesis of AgNPs
that are uniform in size, morphology, and functionality are essential for wide variety of
biomedical applications. In the current study, we aim to investigate methods to potentiate
the cytotoxic effect of different Cynara scolymus L. part extracts through green synthesis
of AgNPs. The biological and cytotoxic activity of AgNPs is based on several factors as
particle morphology, size distribution, dissolution rate, and the type of reducing agents
utilized in the AgNPs synthesis [12,13]. Moreover, they influence cellular uptake, biological
distribution, and biological barrier penetration [14]. Consequently, accurate design and
synthesis of AgNPs which possess uniformity in size, morphology, and functionality are
fundamental for biomedical implementations [15].

2. Materials and Methods
2.1. Plant Extracts

The plant was collected from El Behera Governorate, which has the largest cultivated
area of artichokes in Egypt, during December 2020. Then, it was taxonomically identified
at Faculty of Science, Suez Canal University, and a voucher specimen was kept at the
herbarium of Pharmacognosy Department, Faculty of Pharmacy, Suez Canal University
under registration code (CS-2020). Three different parts were detached from the plant
to be investigated separately: bracts, flowers, and stems. Each part was air dried by
placing it on a shallow tray lined with a layer of paper towels in a dry place with good
air circulation for 7 to 10 days, and then they were finely ground using an electric grinder.
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This step was followed by cold maceration (I Kg of each part) at room temperature for
1 week using methanol. The extraction process was repeated three times to ensure complete
extraction [16]. The three extracts were concentrated under reduced pressure using rotary
evaporator and stored in the refrigerator.

2.2. Determination of the Total Phenolic Content in the Different Plant Extracts

The total phenolics in the three different extracts (bracts, flowers and stem) of Cynara
scolymus L. were assessed spectrophotometrically using Folin–Ciocalteu method, as pre-
viously mentioned [17]. UV absorbance was measured at λ 630 nm using a Milton Roy,
Spectronic 1201 (Houston, TX, USA). Gallic acid was utilized as a standard. The results
were reported in terms of gallic acid equivalents (mg GAE/g dry extract).

2.3. Green Synthesis and Preparation of Silver Nanoparticles

The biogenic synthesis of AgNPs in the presence of the total extract of bracts, flowers,
and stems were prepared using a modified method of that reported by Kim et al. [18]. and
Ashour et al. [19]. Initially, 10 mg of the extract was dissolved in 1 mL ethanol, then added
to 10 mL of 10 mM AgNO3. A few drops of 1 M NaOH were added, and the mixture
was agitated for 1 h at 400 rpm at 60 ◦C in the dark. All prepared nanoparticles were
purified by centrifugation at 15,000 rpm for 1 h at 4 ◦C. The AgNPs were re-dispersed in
double-distilled water and sonicated for 30 s in sonicating water bath, then centrifuged
under the same previous conditions. The washing procedures using double-distilled water
were repeated three times.

2.4. Characterization of Silver Nanoparticles
2.4.1. UV-Vis Absorbance Spectroscopy

The reduction of Ag+ ions was confirmed by measuring the UV-vis spectrum using a
double-beam spectrophotometer (V630, Jasco, Tokyo, Japan). The spectrum was recorded
throughout a range of 300–600 nm.

2.4.2. Size Analysis and Surface Charge Determination

Average particle size (expressed as Z-average), zeta potential (ZP) and polydispersity
index (PDI) were accurately measured by photon correlation spectroscopy (PCS) using
Malvern Zetasizer (Nano ZS, Malvern Instruments Ltd., Malvern, UK). Each sample was
diluted 20 times with distilled water before analysis. All measurements were performed at
ambient temperature (25 ◦C) and in triplicates. Finally, the mean and standard deviation
values were accurately calculated [20].

2.4.3. Transmission Electron Microscopy (TEM)

Transmission electron microscopy (TEM) was carried out to examine the size and
surface morphology of the synthesized AgNPs. The sample preparations were further
diluted 50 times with double-distilled water. Then the diluted samples were negatively
stained with phosphotungstic acid and dried on carbon-coated copper grids. The thin
film formed was air-dried at room temperature and observed using transmission electron
microscope (JTEM model 1010, JEOL®, Tokyo, Japan) with an accelerating voltage of about
100 kV [21].

2.5. Biological Activity
2.5.1. MTT Assay

Cancer cell lines A549 and PC-3 were obtained from the National Cancer Institute
in Cairo, Egypt, cultured in “RPMI-1640/DMEM media L-Glutamine (Lonza Verviers
SPRL, Belgium, cat#12-604F). The cells were cultured in 10% fetal bovine serum (FBS,
Sigma-Aldrich, Burlington, MA, USA) and 1% penicillin/streptomycin (Lonza, Verviers,
Belgium)”. Cells were seeded in triplicate on a 96-well plate at a density of 5 × 104 cells,
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and then treated with the extracts at concentrations of (0.1, 1, 10, and 100 g/mL) for 72 h.
Cell viability was assessed using MTT solution (Promega, Madison, WI, USA) [22,23].

2.5.2. Annexin V/PI Staining for Apoptosis/Necrosis Assessment

Treatment with flower extract AgNPs (IC50 = 1.52 µM, 48 h) was applied to A549 cells
that had been cultured in 6-well culture plates (3–5 × 105 cells/well) overnight. Following
collection of cells and medium supernatants, the cells were suspended in 100 L of Annexin-
binding buffer solution “25 mM CaCl2, 1.4 M NaCl, and 0.1 M Hepes/NaOH, pH 7.4”
and incubation with “Annexin V-FITC solution (1:100) and propidium iodide (PI) at a
concentration equal to 10 µg/mL in the dark for 30 min.” Afterwards, the Cytoflex FACS
machine was used to collect the labelled cells, and the cytExpert software was utilized to
evaluate the results [24–26].

2.5.3. Gene Expression Analysis (RT-PCR) for the Selected Genes

Gene expression of P53, Bax, and Caspases-3,8,9 was identified as pro-apoptotic genes,
while Bcl-2 was identified as an anti-apoptotic gene, and their gene expression was assessed
using RT-PCR to investigate the apoptotic pathway; their sequences in forward and reverse
direction are shown in Table 1. MCF-7 cells were treated with flower extract AgNPs
(IC50 = 1.52 µM, 48 h) following the usual procedures, and the RT-PCR reaction was carried
out [27,28].

Table 1. Sequences of forward and reverse primers.

Gene Forward Reverse

P53 5′-CCCCTCCTGGCCCCTGTCATCTTC-3′ 5′-GCAGCGCCTCACAACCTCCGTCAT-3′

Bax 5′-GTTTCATCCAGGATCGAGCAG-3′ 5′-CATCTTCTTCCAGATGGTGA-3′

CASP-3 5′-TGGCCCTGAAATACGAAGTC-3′ 5′-GGCAGTAGTCGACTCTGAAG-3′

CASP-8 5′-AATGTTGGAGGAAAGCAAT-3′ 5′-CATAGTCGTTGATTATCTTCAGC-3′

CASP-9 5′-CGAACTAACAGGCAAGCAGC-3′ 5′- ACCTCACCAAATCCTCCAGAAC-3′

Bcl-2 5′-CCTGTGGATGACTGAGTACC-3′ 5′-GAGACAGCCAGGAGAAATCA-3′

β-actin 5′-GTGACATCCACACCCAGAGG-3′ 5′-ACAGGATGTCAAAACTGCCC-3′

2.5.4. Protein Expression Using Western Blotting

Furthermore, untreated, and treated A549 cancer cells were treated with flower extract
AgNPs (IC50 = 1.52 µM, 48 h) were tested for protein expression using Western blotting
assay for further validation of the apoptotic pathway at the protein expression level. Cells
were washed in PBS and lysed in boiling sample buffer before being electrophoresed on
a sodium dodecyl sulphate polyacrylamide gel (SDS-PAGE). After boiling the lysates for
5 min in lamellae buffer, the proteins were separated using SDS-PAGE and transferred to
an Immobilon membrane (Millipore, Merck KGaA, Darmstadt, Germany). After blocking
in 5% nonfat milk for 1 h, the membranes were probed overnight at 4 ◦C with primary
antibodies against “P53, Bax, Bcl-2, caspase-3, and caspase-9”. After conjugating appropri-
ate secondary antibodies, immunoblots were densitometrically analyzed to quantify the
amounts of tested proteins [29].

2.6. Liquid Chromatography–Electrospray Ionization Mass Spevtrometry (LC-ESI-MS) Analysis

The LC-ESI-MS analysis was performed using a UPLC instrument equipped with
a reversed-phase C-18 column (ACQUITY UPLC BEH C18 column, 1.7 µm particle size,
2.1 × 50 mm column). Mobile phase elution was conducted at a flow rate of 0.2 mL/min
using a gradient mobile phase (A: H2O, B: acetonitrile (Merck, Darmstadt, Germany), both
acidified with 0.1% formic acid (Merck, Darmstadt, Germany)). The UPLC compartment
was equipped with an electrospray ESI source (electrospray voltage, 3.0 kV; sheath gas,
nitrogen; capillary temperature, 440 ◦C) in negative ionization mode. The ESI-MS range
was set at m/z 100 and 1000, with starting collision-induced dissociation energy of 30 eV, and
MassLynx 4.1 software was used to process the spectra. The compounds were identified
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by comparison of their data, particularly accurate masses, with those reported in the
literature [30].

3. Results
3.1. Total Phenolic Content in the Different Plant Extracts

The total phenolic contents of the three different extracts of Cynara scolymus L. were
assessed separately using the Folin–Ciocalteu colorimetric method. The results were presented
as gallic acid equivalents and found as 74.29 ± 3.85, 60.94 ± 3.28 and 26.59 ± 1.37 (mg/gm)
for the flower, bract, and stem extracts, respectively, where the flower extract revealed the
highest content compared to the bracts and the stem extracts.

3.2. UV-Vis Absorbance Spectroscopy

All prepared AgNPs formulations showed brown color due to the characteristic
surface-plasmon resonance absorption band in the range of 400–500 nm. Figure 1. It
is known that metal nanoparticles have a surface plasmon resonance absorption in the
UV–Visible region. The band of surface plasmon occurs due to the coherent existence of
free electrons in the conduction band due to the small particle size [31,32]. This confirms
the reduction of Ag+ ion to colloidal Ag.
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3.3. Size Analysis and Surface Charge Determination

Measurement of mean particle size by DLS technique gives a comprehensive picture
of the particle size of the whole sample as well as the homogeneity of size distribution
throughout the sample. That is why it was performed in the current study, although it is
reported that DLS measurement is mostly used for AgNPs synthesized from bio-polymers
not from the plant extracts and microorganisms [11]. Results given in Table 2 show that
particle size values of the prepared AgNPs ranged between 23.6 ± 1.08 of the LL extract
AgNPs and 27.2 ± 0.91 nm for the AA extract AgNPs. From the obtained data, it is
clear that the three prepared formulations show small difference in the mean particle
size. This can be an indication to the consistency of the method of preparation and the
absence of effect on different parts of the plant on the obtained AgNPs size. It is well
proven that the particle size, surface charge, and NPs shape have a significant impact on
pharmacokinetics, cell internalization, tissue distribution, cellular uptake, and clearance.
Additionally, physiological processes such as hepatic uptake and tissue diffusion, tissue
extravasation, and renal excretion mainly depend on average particle size [33]. Additionally,
controlling the particle size, charge, and surface chemistry of the nanocarrier enables to
avoid various limitations of conventional treatments such as administration of higher
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doses, low bioavailability, and the poor chemical stability of the administered drug [34].
It is also reported that the NPs size is one of the most important factors used to predict
the circulation time inside living tissues. The interaction of macrophages with targets
nanoparticles is dependent on particle size, as shown by Doshi et al. [35]. It was reported
in the literature that this small range of particle sizes showed higher cytotoxicity compared
to larger particles. Xu and colleagues studied the effect of particle size of the AgNPs on
different glioma cell lines. They found that the AgNPs of size range (20–50 nm) was found
to be cytotoxic to glioma cells compared to 100 nm particles [36]. Liu et al. investigated the
effect of AgNPs of different particle sizes on four different human cell lines. They found
that the smaller nanoparticles enter cells more easily than larger ones, which may be the
cause of the higher toxic effects [37].

Table 2. Particle size (PS), polydispersity index (PDI), and zeta potential (ZP) of the synthesized AgNPs.

Formula PS (nm) PDI ZP (mV)

Flower extract AgNPs 26.57 ± 0.431 0.204 ± 0.027 −29.9 ± 0.854
Bract extract AgNPs 23.60 ± 1.082 0.123 ± 0.006 −34.2 ± 0.666
Stem extract AgNPs 27.24 ± 0.912 0.283 ± 0.020 −27.2 ± 1.417

On the other hand, PDI measures size distribution in the formula and ranges usually
from 0 to 1. Low PDI values ranged from 0.123 ± 0.006 to 0.283 ± 0.020 show a narrow size
distribution and encourage long-term nano dispersion stability; however, values greater
than 0.5 suggest that there is no uniform size distribution [38]. Lower values of PDI are
desirable for a lower variation in AgNPs formulation. The PDI of all prepared AgNPs
formulae show uniform size distribution and perfect homogeneity; see Table 2.

Zeta potential is the overall charge acquired by the particles. It is important to obtain
precise judgments about nanoparticles dispersions stability. The colloidal dispersions
are considered highly stable when the ZP value is around 30 mV or greater due to the
presence of electrostatic repulsion between particles [25]. A high value of zeta potential
will ensure system stability, which helps the nanocarrier to resist aggregation. When
the zeta potential is very low, attractive forces exceed repulsion and the dispersion will
be unstable. So, nanoparticles with higher zeta potentials are electrically stabilized [39].
In this investigation, the results obtained for zeta potential were in the range between
−27.2 ± 1.417 and−34.2 ± 0.66 mV, as illustrated in Table 2. The ZP results clearly indicate
that all prepared AgNPs have sufficient charges that would prevent their agglomeration
and are considered highly stable.

3.4. Transmission Electron Microscopy (TEM)

The surface morphology, size and shape of the synthesized AgNPs was illustrated by
TEM. The TEM image Figure 2 revealed that AgNPs are spherical in shape, fairly monodis-
persed, and effectively dispersed without agglomeration. The inset of Figure 2 shows the
particle size distribution of AgNPs derived from TEM data. The barely perceptible variation
in PS measurement between the two techniques (TEM vs. DLS) results can be illustrated
by the difference in the measurements techniques. TEM measurement is a number-based
particle size measuring method however DLS is an intensity-based method.

3.5. Cytotoxic Activity

Figure 3 shows the results of an MTT assay testing the cytotoxicity of crude extract
samples from the brackets, flowers, and stems of Cynara scolymus L. against prostate
(PC-3) and lung (A549) cancer cell lines. Based on the cytotoxicity data shown in Table 3,
crude extracts of brackets, flowers, and stems revealed low to moderate cytotoxic activity
against A549 and PC-3 cells (IC50 = 36.57 to 165.3 g/mL). When compared to their non-nano
counterparts, cytotoxicity results were significantly enhanced when nano formulations
were used. Flower AgNPs displayed strong cytotoxicity against PC-3 and A549 cell lines,
with IC50 values of 2.47 g/mL and 1.35 g/mL, respectively, compared to doxorubicin
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and AgNPs with IC50 values of 5.13 and 3.75 µg/mL against PC-3 cells, and with IC50
values of 6.19 and 22 µg/mL against A549 cells, respectively. Additionally, AgNPs of the
bracts showed promising cytotoxicity with IC50 values of 14.29 and 16.4 µg/mL, while
AgNPs of the stems showed weak cytotoxicity. These findings demonstrated that the floral
extract’s AgNPs possessed significant cytotoxicity, justifying additional investigation into
the mechanism of action in A549 and PC-3 cells.
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Table 3. Summarized IC50 values for different extracts with AgNPs of Cynara scolymus L.

Sample Working
Concentration

IC50 [µg/mL] *

PC-3 A549

1 Extract “bracts”

0.1, 1, 10, 50, 100
µg/mL

68.3 ± 2.1 86.4 ± 3.1
2 Extract “flowers” 45.36 ± 2.6 36.57 ± 1.56
3 Extract “stems” 165.3 ± 4.96 136.1 ± 4.9
4 Bract extract AgNPs 14.29 ± 1.23 16.4 ± 0.72
5 Flower extract AgNPs 2.47 ± 0.24 1.53 ± 0.34
6 Stem extract AgNPs 83.4 ± 2.19 61.2 ± 2.65
7 AgNPs 3.75 ± 0.32 22.0 ± 1.12
8 Doxorubicin 5.13 ± 0.64 6.19 ± 0.58

* IC50 were calculated by non-linear regression curve fir using GraphPad prism.

3.6. Apoptosis-Induction Activity
3.6.1. Annexin V/PI Staining

Cytotoxic activity of flower extract AgNPs against A549 and PC-3 cells was investi-
gated for its mechanism for apoptosis-induction using Annexin V/PI staining. As seen in
Figure 4, flower extract AgNPs induced total lung apoptotic cell death by 27.7% compared
to 0.67% in the untreated control cells. These findings showed that this extract induced cell
death by apoptosis by a 41.34-fold change, and it induced necrotic cell death by 10.2-fold.
Additionally, it induced total prostate apoptotic cell death by 17.8% compared to 1.1% in the
untreated control cells. These findings showed that this extract induced cell death by apop-
tosis by a 16.18-fold change, and it slightly induced necrotic cell death by 2.7-fold. Hence,
flower extract AgNPs exhibited cytotoxicity in A549 and PC-3 through apoptosis-induction
in both cells.

3.6.2. Gene Expression Analysis using RT-PCR

Gene expression analysis for apoptosis-related genes in untreated and treated A549
cells was performed to examine apoptosis-induction by flower extract AgNPs treatment.
As seen in Figure 5, flower extract AgNPs upregulated P53 gene by 7.9-fold, Bax gene by
6.98-fold, and caspases 3, 8, 9 by 10.76, 2.84, and 8.47-fold, respectively, while it down-
regulated the Bcl-2 gene by 0.19-fold, this treatment-induced apoptosis in A549 cells was
consistent with expected behavior [24,40] of proving apoptosis-induction.

3.6.3. Protein Expression Using Western Blotting

Further confirmation of apoptosis-induction in A549 cells using Western blotting was
employed to measure the levels of p53, Bax, caspase-3 and 9, and Bcl-2 proteins. P53, Bax,
and caspase-3 and 9 proteins were found to be upregulated in the study results. Both thick
and thin bands and their relative quantification data from Figure 6 show that flower extract
AgNPs treatment resulted in a decrease in Bcl-2 protein expression. These findings are in
line with the upregulation of pro-apoptotic genes and the downregulation of anti-apoptotic
genes observed during RT-PCR.

Previous studies revealed that there is a statistically significant relationship between
total polyphenol consumption and the risk of developing cancer [41]. Due to the fact that
the phenolic sets in polyphenols can receive electron with formation of steady phenoxy
radical, polyphenols disturb or disorganize series of oxidation reactions in constituents
of cells, and this is responsible for their ability to prevent various degenerative diseases,
including different cancer types [42,43]. Moreover, it was declared that phenolic acids
exert a direct anti-proliferative action [44]. It was also declared that the flowers of Cynara
scolymus L. accumulate several phenolic acids including quinic, chlorogenic, gallic, ferulic,
cinnamic vanillic, 1,5-Dicaffeoylquinic, and 1,3-di-O-caffeoylquinic acid (cynarin) [45,46].
The flower of the plant also contains a number of flavonoids, mainly luteolin and apigenin
(both aglycones) and glycosides [47,48]. Based on the data on our present study, the flower
extract of Cynara scolymus L. exhibited the highest content of phenolic constituents exactly
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74.29 ± 3.85 (mg/gm) compared to 60.94 ± 3.28 and 26.59 ± 1.37 (mg/gm) for the bract
and stem extracts, respectively. This can explain the relatively higher cytotoxic activity
of the flower extract compared to the other two extracts. Since the aim of our work is to
optimize the cytotoxic activity and to discover the most efficient way to make use of this
natural product, we selected the flower extract to be formulated as AgNPs. As mentioned
in the discussion, this formula exhibited more potent cytotoxic effects, and these results
make it recommended as an optimistic drug lead.
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3.7. UPLC-ESI-MS Analysis for Identifiction of Bioactive Metabolites

The three parts (flower, bract, and stem) of Cynara Scolymus were analyzed using
UPLC-ESI-MS, resulting in a noticeable difference in their chemical composition, as shown
in Figure 7 and Table 4.
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Figure 5. Evaluation of flower extract AgNPs on A549 cell gene expression in both control and treated
samples (IC50 = 1.52 µM, 48 h). β-actin was used as a house-keeping gene. Dashed line represents
for the fold change of untreated control. Fold of change is calculated by 2ˆ -∆∆CT, where ∆∆CT is the
difference between mean values of genes CT values in the treated and control groups.
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Table 4. LC-MS metabolomic analysis of methanolic crude extracts of bract, flower, and stem of C.
scolymus L.

Ret. Time m/z Adduct Molecular Formula Deduced Compound References

Bract

1.38 353 [M-H]− C16H18O9
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Table 4. Cont.

Ret. Time m/z Adduct Molecular Formula Deduced Compound References

10.83 329 [M-H]− C18H34O5
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quercetin and 1,3-di-O-Caffeoylquinic acid (cynarin) [45,49,54]. Bracts contain Apigenin-7-
O-malonyl glucoside, hesperidin, and Cynaropicrin, as reported in [41]. Flower and bracts
contain Luteo-lin-7-O-glucoside (cynaroside), 3-O-Caffeoylquinic acid (Neo Chlorogenic
acid). 5-O-Caffeoylquinic acid (Chlorogenic acid), Luteolin 7-O-malonylglucoside, 1,5-di-O-
Caffeoylquinic acid, 3,5-Di-O-caffeoylquinic Acid, also reported in [41,53,54] Chlorogenic
Acid, Luteolin, luteolin-7-O-rutinoside and Apigenin are existing in the three parts with
considerable difference in concentration as reported in [41,45,56], and this finding agrees
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with our study. These polyphenols exhibited cytotoxic effects and apoptosis-induction
activity that help in the treatment of prostate and lung cancer. It is now obvious why the
crude extract of the C. scolymus L. flower portion showed a stronger cytotoxic activity than
those of the bracts or stem. Previous studies as those by Mileo, Di Venere et al. conducted
studies on the edible part (head) of fresh artichoke using breast cancer cell line MDA-MB231
and found that high dosages of polyphenolic extracts of artichoke extracts can initiate an
apoptotic pathway and halt tumor development [59]. Additionally, Pulito, Mori et al.
tested the edible parts (receptacles with inner and intermediate bracts) and leaves using cell
cytotoxicity assay on human carcinoma cells MSTO-211H, MPP-89, and NCI-H28 mesothe-
lioma cell lines and found that Cynara scolymus affects malignant pleural mesothelioma
by promoting apoptosis and restraining invasion [60]. Through the use of intrinsic and
extrinsic signalling pathways, luteolin and luteolin-7-O-glucoside (cynaroside) can slow or
stop the growth of cancer cells both in vitro and in vivo by protecting against carcinogenic
stimuli, inhibiting tumor cell proliferation, inducing cell cycle arrest, and inducing apopto-
sis [61,62]. Through several investigations, quercetin (QU) and quercetin glycoside (rutin),
two polyphenolic flavonoids, stand out among the natural products. The biological charac-
teristics of rutin (RU) and its aglycone (QU) include anti-oxidant, anti-inflammatory, and
anti-carcinogenic actions [63]. Chlorogenic acid (CGA), also known as 5-O-caffeoylquinic
acid, is polyphenol act as curative compounds against oxidative stress, which is a key
player in the pathophysiology of many diseases, including cancer [64]. Moreover, 1,5-di-O-
Caffeoylquinic acid, 3,5-Di-O-caffeoylquinic acid, and other phenolic compounds possess
potent anti-RSV activity, anti-oxidant and anti-bacterial activity [65–67]. The primary caf-
feoylquinic acid derivative, cynarin, is present in the leaves and heads of artichokes. It may
have cytotoxic, choleretic, anti-oxidative, hepatoprotective, anti-atherosclerotic, and anti-
oxidative properties [68]. Extensive studies have demonstrated the significant anti-oxidant,
anti-inflammatory, and anti-carcinogenic capabilities of apigenin. [69].

In this study, there are three mechanisms for evaluation of in vitro cytotoxic activity
as Annexin V/PI staining, Gene expression analysis using RT-PCR [24,40] or protein
expression using Western blotting. These methods provide simplicity, cost-management,
and rapid technique. The comparison between the extract from Cynara scolymus’ various
sections and its nano form is the study’s main objective. The potential for cytotoxicity
increases with decreasing IC50 values for the crude extracts under investigation. The
biological findings showed that, in comparison to doxorubicin as a reference drug, the silver
nano particles of polyphenolic fraction of flower extract (flower extract AgNPs) exhibited
potent cytotoxicity against PC-3 and A549 cell lines. Using flow cytometry and gene
expression tests to investigate apoptosis-induction, flower extract AgNPs demonstrated a
greater ratio of apoptosis in PC-3 cells compared to A549 cells. Our results agreed with their
reported anti-cancer activities Phuong Thuy et al. and Shallan et al., [70,71] either through
apoptosis-induction or anti-oxidant activation. Erdogan et al. [72] previously created silver
nanoparticles using Cynara scolymus leaf extracts and shown their anti-cancer potential by
inducing apoptosis. Finally, these positive results suggest more in vivo research on the
effectiveness of silver nanoparticles of the total phenolic fraction of C. scolymus L. flower
extract against prostate cancer. The estimate of the polyphenolic fraction of floral extract’s
pharmacokinetics is another interesting area of research.

5. Conclusions

Cynara scolymus L. flower extract AgNPs exhibited potent cytotoxicity compared to
the normal form against PC-3 and A549 cell lines with IC50 values of 2.47 µg/mL and
1.35 µg/mL, respectively. It exhibited apoptosis activity in both A549 and PC-3 cells by
41.34 and 16.18-fold-changes. Additionally, apoptosis activity was further proved through
upregulation of pro-apoptotic markers of P53, Bax, caspases-3, 8, 9, and downregulation of
anti-apoptotic marker Bcl-2 in both gene and protein expression levels. So, this formula
may serve as a promising source for anti-cancer candidates.
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