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Abstract: Manzamines are chemically related compounds extracted from the methanolic extract
of Acanthostrongylophora ingens species. Seven compounds were identified by our research group
and are being characterized. As their biological target is unknown, this work is based on previous
screening work performed by Mayer et al., who revealed that manzamine A could be an inhibitor of
RSK1 kinase. Within this work, the RSK1 N-terminal kinase domain is exploited as a target for our
work and the seven compounds are docked using Autodock Vina software. The results show that
one of the most active compounds, Manzamine A N-oxide (5), with an IC50 = 3.1 µM, displayed the
highest docking score. In addition, the compounds with docking scores lower than the co-crystalized
ligand AMP-PCP (−7.5 and −8.0 kcal/mol) for ircinial E (1) and nakadomarin A (7) were found to
be inferior in activity in the biological assay. The docking results successfully managed to predict the
activities of four compounds, and their in silico results were in concordance with their biological data.
The β-carboline ring showed noticeable receptor binding, which could explain its reported biological
activities, while the lipophilic side of the compound was found to fit well inside the hydrophobic
active site.

Keywords: lymphoma L5178Y cell line; RSK1 N-terminal kinase; molecular docking; manzamine/es

1. Introduction

More than 8000 new marine natural products (MNP) were recorded between 2001 and
2010 [1]. This number has grown significantly since then. Interestingly, numerous marine
leads which are now under clinical trial are promising, and several of these agents are likely
to reach the market in the coming years [2–4]. Six of ten marine metabolites approved by
the FDA are anticancer agents, while three are marine-sponge-derived. Manzamines are a
unique class of alkaloids present in marine sponges and possess a fused tetra- or pentacyclic
ring system which is linked to a β-carboline moiety. Manzamines were initially reported
from the Indo-Pacific sponge Acanthostrongylophora ingens [5]. Since then, more than 80 man-
zamine congeners have been isolated, including ircinal A [6], ircinal E [7],, nakadomarin
A [8], manzamine A [9], 12,28-oxamanzamine E [10], zamamiphidin A [11], zamamidine
C [12], manzamine J N-oxide [13], and acantholactone [14]. Manzamine derivatives have
attracted scientific interest due to their bioactivity potential, including antimalarial [9],
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anti-inflammatory, antiviral [15], anti-atherosclerotic [16], antimicrobial [10], proteasome-
inhibitory [17,18], and cytotoxic [19] effects. Moreover, various molecular targets have
been elucidated as valid targets for manzamines, namely, vacuolar ATPases [20], glyco-
gen synthase kinase-3 (GSK-3), and cyclin-dependent kinase 5 (CDK5) [21]. Furthermore,
Mayer A.M.S. et al. [22] outlined for the first time that manzamine A inhibited a 90 kDa
ribosomal protein kinase S6 (RSK1) as they tested a group of 30 protein kinases. Moreover,
it was found in this study that RSK kinase assays demonstrated a 10-fold selectivity in the
potency of the same compound in vitro against RSK1 versus RSK2. In addition to that, the
divergent binding and selectivity of manzamine A toward the two isoforms was supported
by their computational docking experiments. According to these experiments, it has been
found that the RSK1-manzamine A (N- and C termini) complexes appear to have stronger
interactions and preferable energetics contrary to the RSK2-MZA ones. Additionally, they
proposed that manzamine A binds to the N-terminal kinase domain of RSK1 rather than the
C-terminal. RSK kinases consist of two functional kinase catalytic domains: the C-terminal
kinase domain (CTKD) classified as the calcium and calmodulin-regulated kinases (CamK)
family and phosphorylated by ERK1/2, and the N-terminal kinase domain (NTKD), which
is classified as a protein kinase A, G, and C (AGC) family member [23]. RSK1 is a 90 kDa
ribosomal S6 kinase which belong to vertebrate family of cytosolic serine–threonine ki-
nases that contain four homologous isoforms, namely, RSK1-4. They act downstream of
the ras-ERK1/2 (extracellular-signal-regulated kinase 1/2) pathway [23]. RSK1 is found
in the lungs, kidneys, pancreas and brain (cerebellum and microglia) [23–25]. During
our ongoing search targeting bioactive secondary metabolites from marine sources [7,26]
guided by the study that has been published by Mayer A.M.S. et al. [22], we examined the
Indonesian marine sponge of Acanthostrongylophora ingens collected at Ambon (Indonesia)
in October 1996 [7].

The methanol extract of Acanthostrongylophora ingens has afforded seven manzamines,
namely, ircinal E, manzamine A, 8-hydroxymanzamine, manzamine F, manzamine A
N-oxide, 3,4-dihydromanzamineA N-oxide, and nakadomarin A (Figure 1) [7]. Within this
work, these manzamine derivatives, previously isolated and characterized [7], were docked
within the active site of the RSK1 N-terminal kinase domain of murine lymphoma L5178Y
cell line.
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Figure 1. The chemical structures of the methanolic extract of Acanthostrongylophora ingens used in
the in silico docking study.

2. Materials and Methods

The crystal structure of the RSK1 N-terminal kinase domain (NTKD) was downloaded
from Protein Data Bank (PDB) under the PDB code 2Z7Q with a resolution of 2.00 Å.
Autodock Vina [27] was used to perform molecular modeling in a cubic grid box with 25 Å
sides centered on the co-crystalized ligand phosphomethylphosphonic acid adenylate ester
(AMP-PCP) with exhaustiveness of 16. The protein and ligands were prepared as reported
earlier [28,29]. In short, the protein was prepared using PyMOL software by stripping
water molecules, adding hydrogens, and maintaining one side chain in case of duplicate
sidechain amino acids. Ligands (Figure 1) were obtained from PubChem when possible as
3D structures, and were minimized and converted to standard pdbqt format using PyRx
software. Docking was performed using Autodock Vina and the obtained nine poses were
analyzed and arranged according to their docking score.

3. Results

Seven marine-derived compounds, as well as the co-crystalized AMP-PCP ligand,
were docked in the active site of the RSK1 N-terminal kinase domain (NTKD). The AMP-
PCP ligand was docked to the active site as a validation step. The aim of this was to confirm
that the software was able to predict the correct pose of the AMP-PCP ligand. In addition,
the docking score of AMP-PCP ligand was used as a guide to evaluate the docking scores
of the tested ligands. Docking software protocol was accepted when an RMSD less than
2 Å was obtained between the docked pose and the crystal pose. The RMSD was found to
be 1.472 Å using the DockRMSD server [30]. Docking results of the seven test compounds
as well as their biological activity are shown in Table 1.

Table 1. The docking scores and biological activity of a series of manzamine alkaloids with natural
kinase substrate 2Z7Q.

Name IC50 (µM) Docking Score (kcal/mol)

Ircinial E (1) 21.7 −7.5
Manzamine A (2) 3.3 −9.9

8-Hydroxymanzamine A (3) 3 −10.2
Manzamine F (4) 4.1 −10.3

Manzamine A N-oxide (5) 3.1 −10.6
3,4-Dihydromanzamine A N-oxide (6) 2.8 −9.8

Nakadomarin A (7) - −8.0
AMP-PCP Ligand −8.1
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4. Discussion

Validation of the docking procedure was performed by redocking the AMP-PCP co-
crystalized ligand and comparing the predicted pose to the crystal structure pose (Figure 2).
In general, if the RMSD between both structures was less than 2 Å, the docking validation
was accepted. The docking software was able to predict the correct pose with an RMSD of
1.472 Å and a docking score of −8.1 kcal/mol.
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Figure 2. Validation of docking procedure by redocking of AMP-PCP ligand (yellow). The docking
pose predicted (pink) is relatively similar to the crystal structure with an RMSD of 1.472 Å. Magnesium
ion in the active site is shown as the green sphere.

The docking results of the rest of the compounds are shown in Table 1. Based on
these results, there is a good correlation between the reported IC50 and the docking scores
for most of the compounds. Docking scores were able to segregate the compounds into
active and inactive compounds. Two compounds showed docking scores weaker than
the AMP-PCP ligand (−8.1 kcal/mol): ircinial E (1) and nakadomarin A (7). Docking
scores for these two compounds were −7.5 and −8.1 kcal/mol, respectively. These two
compounds showed weak or no activity in the biological assays. It worth mentioning here
that these two compounds were missing the β–carboline ring compared with the other
five compounds 2–6. This shows the importance of this part of the molecule for both the
biological activity and docking score.

The remaining five compounds (2–6) showed a relatively small activity range in terms
of IC50 (2.8–4.1 µM) and docking score (−9.8 to −10.6 kcal/mol). For example, Manzamine
A (2) showed an IC50 of 3.3 µM and a docking score of −9.9 kcal/mol. Adding a hydroxyl
group at position 8 forms 8-Hydroxymanzamine A (3), which has an improved activity
(IC50 of 3.0 µM) as well as improved docking score (−10.2 kcal/mol). The binding modes
of both compounds were very similar, except for the extra hydroxyl group, which formed a
hydrogen bond with D205 and a weaker hydrogen bond with K94. In addition to hydro-
gen bonds, both compounds formed several hydrophobic interactions with hydrophobic
residues in the active site, including L68, L194, V76, F150 and L144. These data suggest that
the presence of the 8-hydroxyl group helps increase the cytotoxicity of the compound, as
well as its docking score (Figure 3).

Revisiting the results portrayed in the Table 1, one can see that docking was not able
to completely differentiate between compounds 2 and 6 in terms of activity. It is well-
known that molecular modeling programs are rough indicators used to explain real results.
However, these results greatly support the already published article by Mayer et al., which
suggests that these compounds, which are derived from manzamine, are good candidates
for RSK1. In addition, this study suggests a potential binding mode between this class of
compound and RSK1, which will be useful for the design of further inhibitors.
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In conclusion, manzamine derivatives could be good lead compounds for potent
inhibitors of RSK1. Molecular modeling techniques have helped in predicting a possible
target when docking studies have been conducted on RSK1. The results produced from this
work have shown a good correlation between the real IC50 and the docking scores against
RSK1. The β–carboline ring has been proven to be an important moiety, and its existence
has contributed to manzamine’s activity. These results will guide any future efforts in
designing manzamines and their semi-synthesized derivatives as potential RSK-1 nhibitors.
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