Document Type


Publication Date



Parkinson's disease (PD) is a progressive neurodegenerative disease that impairs people's lives tremendously. The development of innovative treatment modalities for PD is a significant unmet medical need. The critical function of glucagon-like peptide-1 (GLP-1) in neurodegenerative diseases has raised impetus in investigating the repositioning of a dipeptidyl peptidase IV inhibitor, alogliptin (ALO), as an effective treatment for PD. As a result, the focus of this research was to assess the effect of ALO in a rat rotenone (ROT) model of PD. For 21 days, ROT (1.5 mg/kg) was delivered subcutaneously every other day. ALO (30 mg/kg/day), delivered by gavage for 21 days, recovered motor performance and improved motor coordination in the open-field and rotarod testing. These impacts were highlighted by restoring striatal dopamine content and correcting histological changes that occurred concurrently. The ALO molecular signaling was determined by increasing the quantity of GLP-1 and the protein expression of its downstream signaling pathway, pT172-AMPK/SIRT1/PGC-1α. Furthermore, it curbed neuroinflammation via hampering HMGB1/TLR4/NLRP3 inflammasome activation and conquered striatal microglia activation. Pre-administration of dorsomorphin reversed the neuroprotective effects. In conclusion, the promising neuroprotective effect of ALO highlights the repositioning of ALO as a prospective revolutionary candidate for combating PD


This work opens new horizons for drug repositioning of gliptins in PD. In this study, ROT was used to induce PD in rats.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.