Document Type


Publication Date



Twenty new quinazolinone derivatives bearing a piperonyl moiety were designed and synthesized. The structures of the target compounds were in agreement with the microanalytical and spectral data. Compounds 4-10, 13, 14 and 17-27 were screened for their cytotoxic activity against HepG-2 and MCF-7 cancer cell lines. The target compounds showed IC50 in the range of 2.46-36.85 µM and 3.87-88.93 µM for HepG-2 and MCF-7, respectively. The promising compounds 7, 19, 26 and 27 were selected to measure their EGFR inhibitory activity. The IC50 values of the promising compounds were in the range of 146.9-1032.7 nM for EGFR in reference to Erlotinib (IC50 = 96.6 nM). In further studies on compounds 7, 19, 26 and 27 using HepG-2 cell line, there was significant overexpression of p21 and downregulation of two members of IAPs protein family; Survivin and XIAP, relative to their controls. Annexin V-FITC and caspase-3 analyses have established a significant increase in early apoptosis. Moreover, the four selected compounds have impaired cell proliferation by cell cycle arrest at the G2/M phase compared to their respective control. Considering radiotherapy as the primary treatment for many types of solid tumors, the radiosensitizing abilities of compounds 7, 19, 26 and 27 were measured against HepG-2 and MCF-7 cell lines combined with a single dose of 8 Gy gamma radiation. Measurement of the IC50 of the promising compounds after irradiation revealed their ability to sensitize the cells to the lethal effect of gamma irradiation (IC50 = 1.56-4.32 µM and 3.06-5.93 µM for HepG-2 and MCF-7 cells, respectively). Molecular docking was performed to gain insights into the ligand-binding interactions of 7, 19, 26 and 27 inside the EGFR binding sites and revealed their essential interactions, explaining their good activity towards EGFR.


In this article, the target compounds were designed based on an interesting hybrid drug approach to have a quinazoline ring as the main building block. We also wanted to explore the effect of incorporating piperonyl group and sulfonamide moiety in the designed compounds. We will explore the chemical synthesis of the novel 3, 4 dihydroquinazoline piperonyl derivatives and their cytotoxic effect against breast cancer (MCF-7) as well as hepatic cancer (HepG-2) cell lines and their enzymatic inhibitory activity against the EGFR. Also, to study the potential effects of the promising compounds on cell cycle, caspases, XIAP and their use as promising apoptosis inducers. Furthermore, molecular docking was carried out inside the active site of EGFR to determine the possible binding interactions between the promising compounds and the receptor.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.