"Usage of shape memory alloy actuators for large force active disassemb" by Ayman Abbas Prof, Hoda Abuzied et al.
 

Usage of shape memory alloy actuators for large force active disassembly applications

Document Type

Article

Publication Date

2020

Abstract

Shape memory alloys (SMAs) possess inherent superior properties that make their applications in active disas- sembly an emerging and interesting eld of research. This is because extremely large forces can be generated repeatedly using a small compact-sized element, such as an SMA actuator. To ensure the ability of the SMA actuator to generate a repeated large force or withstand repeated load, several factors should be considered. These include factors that affect the value of the generated recovery forces, such as the amount of strain used, activation temperature, activation time, and cross-sectional area of the SMA element. In general, the compressive strain can be considered as the most in uential factor that affects the value of the generated recovery force. The present research investigates the possible use of the SMA actuator in large-force active disassembly applications. To the best of the authors' knowledge, all the studies conducted in this eld are concerned with implementing active disassembly in applications requiring small disassembly forces. The present research was conducted in three phases. First, the behaviour of the SMA element upon exposure to different repetitive compressive strains was studied, and the generated recovery force and strain hardening induced in the material were considered to ensure the continuous generation of large recovery forces with the least amount of residual strain induced in the ma- terial. Second, the optimum value of the compressive strain required to generate the maximum force with the least amount of residual strain induced in the material was estimated. Third, a practical case study was presented to validate the possible implementation of SMA actuators in large force active disassembly applications. The study successfully estimated the optimum compressive strain value that generated the required recovery force to disassemble the conducted case study using active disassembly technique.

Share

COinS