Bone Marrow Mesenchymal Stem Cells Combat Lipopolysaccharide-Induced Sepsis in Rats via Amendment of P38-MAPK Signaling Cascade

Document Type

Article

Publication Date

3-1-2018

Abstract

© 2017, Springer Science+Business Media, LLC, part of Springer Nature. Sepsis is a systemic inflammatory disorder which often occurs during extremely stressful conditions such as trauma, burn, shock, and infection. This study investigated the curative effects of bone marrow-derived mesenchymal stem cells (BM-MSCs) against hepatic, renal, and pulmonary responses caused by a single administration of lipopolysaccharide (LPS) (10 mg/kg, i.p) in rats. Treatment with BM-MSCs (5 × 105 in 0.1 ml PBS, i.p.) 3 h after LPS antagonized the LPS-induced increment of the liver enzymes (ALT, AST) and kidney functions (BUN, sCr). BM-MSCs decreased tissue levels of P38-MAPK, NF-κB, STAT-3, TNF-α, IL-1β, iNOS, Bax together with elevation of the anti-inflammatory cytokine IL-10 and the anti-apoptotic biomarker Bcl-2. Meanwhile, rats exhibited marked reduction of the broncho-alveolar lavage fluid levels of TNF-α, IL-1β, and IFN-γ. Interestingly, BM-MSCs normalized both broncho-alveolar lavage fluid (BALF) neutrophils count and lung wet/dry ratios. Briefly, these findings may provide a preclinical platform for the management of LPS-induced sepsis using BM-MSCs via their ameliorative anti-inflammatory, anti-oxidant, and anti-apoptotic potentials.

This document is currently not available here.

Share

COinS