Exploration of Chemical Diversity and Antitrypanosomal Activity of Some Red Sea-Derived Actinomycetes Using the OSMAC Approach Supported by LC-MS-Based Metabolomics and Molecular Modelling
Document Type
Article
Publication Date
Fall 9-22-2020
Abstract
In the present study, we investigated the actinomycetes associated with the Red Sea-derived soft coral Sarcophyton glaucum in terms of biological and chemical diversity. Three strains were cultivated and identified to be members of genera Micromonospora, Streptomyces, and Nocardiopsis; out of them, Micromonospora sp. UR17 was putatively characterized as a new species. In order to explore the chemical diversity of these actinobacteria as far as possible, they were subjected to a series of fermentation experiments under altering conditions, that is, solid and liquid fermentation along with co-fermentation with a mycolic acid-containing strain, namely Nocardia sp. UR23. Each treatment was found to affect these actinomycetes differently in terms of biological activity (i.e., antitrypanosomal activity) and chemical profiles evidenced by LC-HRES-MS-based metabolomics and multivariate analysis. Thereafter, orthogonal projections to latent structures discriminant analysis (OPLS-DA) suggested a number of metabolites to be associated with the antitrypanosomal activity of the active extracts. The subsequent in silico screenings (neural networking-based and docking-based) further supported the OPLS-DA results and prioritized desferrioxamine B (3), bafilomycin D (10), and bafilomycin A1 (11) as possible antitrypanosomal agents. Our approach in this study can be applied as a primary step in the exploration of bioactive natural products, particularly those from actinomycetes.
Recommended Citation
Gamaleldin, Noha M.; Bakeer, Waleed; Sayed, Ahmed M.; Shamikh, yara; Hassan, Hossam; Horn, Hannes; Abdelmohsen, Usama; Hozzein, Wael; and El-Gendy, Ahmed, "Exploration of Chemical Diversity and Antitrypanosomal Activity of Some Red Sea-Derived Actinomycetes Using the OSMAC Approach Supported by LC-MS-Based Metabolomics and Molecular Modelling" (2020). Pharmacy. 524.
https://buescholar.bue.edu.eg/pharmacy/524